UNIVERSITI PUTRA MALAYSIA

THERMAL EVALUATION AND SIMULATION OF GLASS WOOL/MAEROGEL® BLANKET

BAHADOR DASTORIAN JAMNANI

FK 2014 33
THERMAL EVALUATION AND SIMULATION OF GLASS WOOL/MAEROGEL® BLANKET

By

BAHADOR DASTORIAN JAMNANI

Thesis Submitted To the School of Graduate Studies, Universiti Putra Malaysia, in fulfillment of the requirements for the Degree of Master of Science

June 2014
COPYRIGHT

All material contain within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in Fulfillment of the requirement for the degree of Master of Science

THERMAL EVALUATION AND SIMULATION OF GLASS WOOL/MAEROGEL® BLANKET

By

BAHADOR DASTORIAN JAMNANI

June 2014

Chairman: Mohd Roshdi Hassan, PhD
Faculty: Engineering

Aerogel blankets are composites of silica aerogel particles dispersed in a reinforcing fiber matrix that turns the brittle aerogel into a durable and flexible insulating mat. While aerogel blanket manufacture from either organic or inorganic material, they are still some concerns over current environmental issues which are common worldwide are global warming, greenhouse effect, and climate change. Awareness of this environmental concern has led to the rise in an effort to renew agricultural waste like RHA (rice husk ash) which is cheaper precursor or a simple method in ambient pressure. As part of this study, to produce an insulator; glass wool was modified by ambient pressure drying methods to fabricate the flexible aerogel blanket. In order to evaluate thermal resistance of aerogel blanket, a hot plate is used. The microstructure of these aerogel blankets are also investigated for better understanding of the production process. Knowledge of the thermo-mechanical properties is important for the optimization of the design for these heterogeneouse materials. In order to assess the aerogel blanket, some technics such as thermal gravimetric analysis (TGA), scanning electron microscopic (SEM) and Fourier Transform Infrared spectrum (FTIR) was done. Moreover a simple numerical micro model have been developed to predict the effective thermal conductivity of flexible aerogel blankets, which consist of fibers, aerogel particles and air-pockets. This simulation has two parts. In the first part of simulation, the effective thermal conductivity of the aerogel composites is computed with different aerogel particles and different volume ratios using the finite element method. The numerical analysis of thermal conductivity is conducted by generating 3D models of the microstructure of the aerogel blanket. In the second part of model, the extracted result from the micro model is inputted to the real sized model to predict top surface temperature. Finally all experiment data are validated by a numerical real sized model.

In this study, a flexible aerogel blanket shows very good thermal resistance compare to original glass wool which is around 35% improvement. In addition TGA reveals that Maerogel® can retard material decomposition of blanket from 270°C to 287°C. Moreover SEM and FTIR clearly show that there is a good bonding between SiO₂
particles that make a strong network to tolerate high temperature and to be flexible blanket. Furthermore Maerogel® blanket structurally was simulated then was validated by experiment result that showed good agreement; there is a well matching between the data that were extracted from simulation and experiment.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk Ijazah Master Sains

PENILAIAN TERMA DAN SIMULASI GLASS WOOL / MAEROGEL® SELIMUT

Oleh

BAHADOR DASTORIAN JAMNANI

Jun 2014

Pengerusi: Mohd Roshdi Hassan, PhD
Fakulti: Kejuruteraan

hubungan baik antara zarah SiO2 yang membuat rangkaian yang kaku untuk berubah dengan suhu yang tinggi dan menjadi selimut yang fleksibel. Disamping itu, struktur selimut Maerogel® telah disimulasikan dan kemudian telah disahkan oleh hasil eksperimen yang menunjukkan perasamaan yang baik; ada juga yang hampir sama antara data yang dipetik daripada simulasi dan eksperimen.
ACKNOWLEDGEMENT

First of all, I would like to extend my deepest praise to GOD who has given me the patience, strength, determination and courage to complete this thesis.

I would like to take this opportunity to express my utmost gratitude to my supervisor, Dr. Mohd Roshdi Hassan, for his invaluable guidance throughout the course of this study. It is only with his patience and guidance that I have been able to complete this process and I am grateful for all of the opportunities that he has provided me. I also would like to acknowledge associated Prof. Madya Dr. Sa’ari Bin Mustapha, my co-supervisor for his invaluable support, constructive comments, continuous support and advice. My appreciation goes especially to Dr. Soraya Hosseini, for her guidance and advice throughout the project. Special thanks also go to my friends at the Department of Mechanical Engineering who helped me throughout this period. Sincere thanks to Mohammad Izadi for his help.

Moreover, my greatest appreciation will always go to my loving parent for their sacrifices, love, patience, and supports. My mother and father for their unending support from distances far away from me, this dissertation would not have been possible without their love and encouragement during this tedious journey. I would like to thank my dear spouse, Sepideh, for her love, warm-heartedness and support.

At last but not least, I would like to dedicate this thesis to my daughter Diana. You will always be the source of my inspiration and a part of me.
I certify that a Thesis Examination Committee has met on 24 June 2014 to conduct the final examination of Bahador Dastorian Jamnani on his thesis entitled "Thermal Evaluation and Simulation of Glass Wool/Maerogel® Blanket" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master of Science.

Members of the Thesis Examination Committee were as follows:

Barkawi bin Safari, PhD
Professor Ir.
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Nur Ismarrubie binti Zahari, PhD
Senior Lecturer
Faculty of Engineering
Universiti Putra Malaysia
(Internal Examiner)

Azmah Hanim binti Mohamed Ariff, PhD
Senior Lecturer
Faculty of Engineering
Universiti Putra Malaysia
(Internal Examiner)

Zuraida Ahmad, PhD
Associate Professor
International Islamic University Malaysia
Malaysia
(External Examiner)

...

NORITAH OMAR, PhD
Associate Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 19 September 2014
This thesis was submitted to the Senate of University Putra Malaysia and has been accepted as fulfillment on the requirement for the degree of Master of Science. The members of the supervisory committee were as follows:

Mohd Roshdi Hassan, PhD
Senior Lecturer
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Sa’ari b. Mustapha, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Member)

BUJANG BIN KIM KUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

Declaration by the student

I hereby confirm that:

- this thesis is my original work
- quotations, illustrations and citations have been duly referenced
- the thesis has not been submitted previously or concurrently for any other degree at any institutions
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be owned from supervisor and deputy vice –chancellor (Research and innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software

Signature: _______________________ Date: 24 June 2014

Name and Matric No.; Bahador Dastorian Jamnani, G31690
Declaration by Members of Supervisory Committee

This is to confirm that:
• the research conducted and the writing of this thesis was under our supervision;
• supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature: ___________________________ Signature: ___________________________
Name of Chairman of Member of
Supervisory Supervisory Committee: ___________________________ Committee: ___________________________

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>i</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>v</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>vi</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xv</td>
</tr>
</tbody>
</table>

CHAPTER

1. INTRODUCTION

1.1 Background
1.2 Problem Statement
1.3 Objectives
1.4 Scope of work
1.5 Overview

2. LITERATURE REVIEW

2.1 Introduction to Glass Fiber:
 2.1.1 Fiber Forming Processes
 2.1.2 GlassWool
2.2 Introductions to Sol-Gel
 2.2.1 Hydrolysis and Condensation Reactions
2.3 Manufacturing of Aerogel
 2.3.1 Gel Preparation
 2.3.2 Preparation of Silica Sol from RHA
 2.3.3 Aging of The Gel
 2.3.4 Drying of the Gel
2.4 Flexible Aerogel Blanket Fabrication
2.5 Introduction of Thermal Characterization
2.6 Thermal Properties of Flexible Aerogel Blanket
 2.6.1 Thermal Conductivity of Aerogel
 2.6.2 Thermal Conductivity of an Aerogel Blanket
2.7 Finite Element Analysis
 2.7.1 Introduction to ANSYS
 2.7.2 Finite Element Model

3. MATERIALS AND METHODS

3.1 Introduction
3.2 Chemical Procedures
 3.2.1 Preparation of Silica Maerogel® Blanket
3.3 Characterizations
 3.3.1 Thermo Gravimetric Analyzer (TGA & DTG) 27
 3.3.2 Scanning Electron Microscopy (SEM) 27
 3.3.3 Measurement of Thermal Resistance 28
 3.3.4 Fourier Transforms Infrared Spectra (FTIR) 30
3.4 Numerical Modeling Using Input from Experimental Observations 31
 3.4.1 Finite Element Modeling 33
 3.4.2 Finite Element Analyzing 34
 3.4.3 Finite Element Formulations 38
 3.4.4 Initial and Boundary Conditions 39
 3.4.5 Mesh Design 42

4. RESULTS AND DISCUSSION 44
4.1 Introduction 44
4.2 Characterization Method 44
 4.2.1 TGA&DTG (Thermogravimetric Analysis) 44
 4.2.2 SEM (Scanning Electron Microscopy) 50
 4.2.3 Thermal Resistant Results & Discussion 54
 4.2.4 FTIR (Fourier Transform Infrared Spectroscopy) 56
4.3 Result Validation 62
 4.3.1 Top Surface Temperature 62
 4.3.2 Validation Result for OGW (Original Glasswool) 63
 4.3.3 Validation Result for MGW (Modified Glasswool), Case4 64
4.4 Numerical Results & Discussion 65
 4.4.1 Thermal Conductivity (K) of the Real Sized Sample 65

5. CONCLUSIONS AND RECOMMENDATIONS 69
5.1 Conclusions 69
5.2 Recommendations 70

REFERENCES 71
APPENDIX 76
BIODATA OF STUDENT 83
LIST OF PUBLICATIONS 84