UNIVERSITI PUTRA MALAYSIA

WASTE OIL-BASED PAINT AS ADDITIVE IN STONE MASTIC ASPHALT

CHEONG SIN SOON

FK 2013 28
WASTE OIL-BASED PAINT AS ADDITIVE IN STONE MASTIC ASPHALT

By

CHEONG SIN SOON

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirement for the Degree of Master of Science

November 2013
COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
ABSTRACT

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of
the requirement for the degree of Master of Science

WASTE OIL-BASED PAINT AS ADDITIVE IN STONE MASTIC ASPHALT

By

CHEONG SIN SOON

November 2013

Chair: Professor Ratnasamy Muniandy, PhD
Faculty: Engineering

The cost of asphalt is crucial in determining the cost of road construction. In the year
2008, the average price of Malaysian crudes is more than 100 USD per barrel. As a
result, a hike in the price of asphalt is observed within the same year. Studies on replace
asphalt as binder or reduce the amount of asphalt used should be carried out to reduce
the construction cost. On the other hand, there is more than 15000 metric tonnes of ink
and paint sludge generated yearly since the year 2006. Thus waste oil-based paint was
chosen to blend with asphalt since it has better bonding when mixed together.

Three type of binders, i.e. 80/100 penetration graded asphalt, 60/70 penetration graded
asphalt and performance grade, PG 76 were used to blend with waste oil-based paint.
The amount of waste paint used in the blending with asphalt binders were 5%, 10% and
20% of the total weight. The physical tests on asphalt binder were carried out in
accordance with ASTM standards. The maximum amount of waste paint blended into
these three binders that met the minimum requirement of PWD standard were chosen. It
was found that the 80/100 penetration graded asphalt blended with 5% of waste paint,
the 60/70 penetration graded asphalt blended with 10% of waste paint and the PG 76
blended with 20% of waste paint met the minimum requirement of the PWD standard.

SMA was used in this study. It is hot mixture asphalt consisting of a coarse aggregate
skeleton and a high binder content mortar. The performance tests such as Resilient
Modulus, moisture susceptibility and permanent deformation tests were carried out on
the paint modified asphalt binder specimens. These results were compared with the
samples that used original binder as control. It was found that the asphalt mixtures with
paint modified asphalt had lower performance compared to the control asphalt mixtures.
However they still meet the requirements of the PWD standard. Therefore waste oil-
based paint can be used to replace 5% of 80/100 penetration graded asphalt, 10% of
60/70 penetration graded asphalt and 20% of PG 76 used in road construction.
The length of PLUS highway is 772 km. Assume that PLUS highway undergo rehabilitation yearly with overlay thickness of 50 mm, the cost of asphalt for rehabilitation (one lane per km) can be saved up to RM 902.50 if 80/100 penetration graded asphalt is used, RM 6,136.50 if 60/70 penetration graded asphalt is used and RM 25,258.50 if performance grade, PG 76 is used.
ABSTRAK

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Sarjana Sains

SISA CAT BERASASKAN MINYAK SEBAGAI BAHAN TAMBAHAN DALAM ASFALT BATU MASTIK

Oleh

CHEONG SIN SOON

November 2013

Pengerusi: Profesor Ratnasamy Muniandy, PhD
Fakulti: Kejuruteraan

Tiga jenis pengikat iaitu asfalt gred penembusan 80/100, asfalt gred penembusan 60/70 dan PG 76 digunakan untuk bercampur dengan cat berasaskan minyak. Kandungan cat yang dicampur ke dalam pengikat adalah sebanyak 5%, 10% dan 20% berdasarkan jumlah berat masing-masing. Ujian fizikal yang dijalankan ke atas pengikat berdasarkan piawai ASTM. Kandungan cat maxima yang dicampur ke dalam tiga jenis pengikat tersebut yang memenuhi kehendak minima piawaian JKR dipilih. Didapati asfalt gred penembusan 80/100 bercampur dengan 5% cat, asfalt gred penembusan 60/70 bercampur dengan 10% cat dan PG 76 bercampur dengan 20% cat memenuhi kehendak minima piawaian JKR.

SMA telah digunakan dalam kajian ini. SMA adalah asphalt campuran panas yang terdiri daripada rangka agregat yang kasar dan kandungan pengikat mortar yang tinggi. Ujian prestasi seperti Modulus Resilient, ujian kerentanan kelembapan dan ujianubah bentuk kekal dijalankan ke atas sampel yang menggunakan asfalt diubahsuai cat sebagai pengikat. Keputusan dibandingkan dengan sampel yang menggunakan pengikat asal sebagai kawalan. Didapati campuran asfalt yang mengandungi cat mempunyai prestasi yang lebih rendah berbanding dengan campuran asfalt kawalan. Walau bagaimanapun, campuran asfalt diubahsuai cat masih memenuhi kehendak piawaian JKR. Oleh itu, sisa
cat berasaskan minyak boleh digunakan untuk mengganti 5% asfalt gred penembusan 80/100, 10% asfalt gred penembusan 60/70 dan 20% PG 76 dalam pembinaan jalan raya.

Panjang lebih raya PLUS adalah 772 km. Andaikan PLUS lebih raya menjalankan rehabilitasi setiap tahun dengan ketebalan hamparan sebanyak 50 mm, kos asphalt untuk rehabilitasi (satu lorong bagi setiap km) boleh diimut sebanyak RM 902.50 jika asfalt gred penembusan 80/100 digunakan, diimut sebanyak RM 6,136.50 jika asfalt gred penembusan 60/70 digunakan dan diimut sebanyak RM 25,258.50 jika PG 76 digunakan.
ACKNOWLEDGEMENTS

I would like to express the deepest appreciation to my committee chair, Prof. Dr. Ratnasamy Muniandy, who continually and convincingly conveyed a spirit of adventure in regard to research and scholarship, and an excitement in regard to teaching. The good advice and support of my co-supervisor, Assoc. Prof. Ir. Salihudin Hassim, has been invaluable on academic and personal level, for which I am extremely grateful.

I offer my sincere appreciation to the Budget Mini scholarship provided by Ministry of Higher Education, Special Graduate Research Allowance and Graduate Research Fellowship provided by Universiti Putra Malaysia. They provided the necessary financial support for my study and this research.

I am most grateful to Kajang Rocks Quarry Sdn. Bhd. and Everflex (M) Sdn. Bhd. It was particularly kind of these two companies for providing me the relevant materials that needed to complete this study. I thank the Civil Engineering Department of Universiti Malaysia for providing numerous facilities to conduct this study.

Amongst my fellow postgraduate friends, I would like to thanks Chuah Pooi Yee, Catherine Tan Poh Phin, Katherine Chuo Sheau Ning, Yong Wai Keong, Leonard Goh Chia Ning, Eltaher Elzarroug Aburkaba and Nor Azurah Che Md Akhir for their advises and technical assistance.

Finally, special thanks to my parents and siblings for their constant undivided support for me to complete this study.
I certify that a Thesis Examination Committee has met on 29th November 2013 to conduct the final examination of Cheong Sin Soon on his thesis entitled "Waste Oil-bases Paint As Additive In Stone Mastic Asphalt" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master of Science.

Members of the Thesis Examination Committee were as follows:

Shattri bin Mansor, PhD
Professor
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Abdul Halim bin Ghazali, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Internal Examiner)

Hussain bin Hamid, PhD
Senior Lecturer
Faculty of Engineering
Universiti Putra Malaysia
(Internal Examiner)

Vernon Ray Schaefer, PhD
Professor
Iowa State University
United States
(External Examiner)

NORITAH OMAR, PhD
Associate Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 19 May 2014
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follow:

Ratnasamy Muniandy, PhD
Professor
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Salihudin Hassim
Associate Professor Ir
Faculty of Engineering
Universiti Putra Malaysia
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
Declaration by graduate student

I hereby confirm that:

- this thesis is my original work;
- quotations, illustrations and citations have been duly referenced;
- this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: ___________________________ Date: ______________

Name and Matric No.: ________________________________
Declaration by Members of Supervisory Committee

This is to confirm that:

- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature: ___________________________ Signature: ___________________________
Name of Chairman of Supervisory Committee: ___________________________
Name of Member of Supervisory Committee: ___________________________

Signature: ___________________________ Signature: ___________________________
Name of Member of Supervisory Committee: ___________________________

x
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>ABSTRACT</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRAK</td>
<td>iv</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>vi</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>vii</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>ix</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xix</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxiii</td>
</tr>
</tbody>
</table>

CHAPTER

1. **INTRODUCTION**
 1.1 General Background
 1.2 Problem Statement
 1.3 Objectives of Study
 1.4 Scope and Limitations of Study

2. **LITERATURE REVIEW**
 2.1 Asphalt Pavement
 2.2 Stone Mastic Asphalt (SMA)
 2.2.1 Materials of SMA
 2.2.2 Mix Design of SMA
 2.3 Paint
 2.3.1 Production of Paint
 2.3.2 Paint Wastes
 2.3.3 Paint Wastes Management
 2.3.3.1 Chemical Composition of Paint Wastes
 2.3.4 Research on Waste Paint
 2.4 Modified Asphalt
 2.4.1 Modification of Asphalt
 2.4.2 Blending Procedure of Modified Asphalt
 2.4.3 Physical Tests on Modified Asphalt
 2.4.4 Performance of Modified Asphalt Mixture
 2.4.4.1 Polymers
 2.4.4.2 Rubber
 2.4.4.3 Thermosetting Polymers
 2.4.4.4 Fiber
 2.4.4.5 Fillers
 2.4.4.6 Antistripping Agents
 2.4.4.7 Summary of Performance of Modified Asphalt Mixture
3 METHODOLOGY

3.1 Introduction 31
3.2 Physical Properties of Aggregate 33
 3.2.1 Los Angeles Abrasion Test 33
 3.2.2 Aggregate Impact Value Test 33
 3.2.3 Aggregate Crushing Value Test 34
 3.2.4 Ten Percent Fine Test 34
 3.2.5 Soundness Test 35
 3.2.6 Flakiness and Elongation Test 35
 3.2.7 Specific Gravity Test 35
 3.2.8 Angularity Number Test 36
3.3 Paint Content Analysis 36
3.4 Physical Properties of Asphalt 36
 3.4.1 Asphalt and Paint Blending 37
 3.4.2 Viscosity Test 38
 3.4.3 Penetration Test 39
 3.4.4 Softening Point Test 39
 3.4.5 Selection of Paint Modified Asphalts 40
 3.4.6 Specific Gravity Test 40
 3.4.7 Flash and Fire Point Test 41
3.5 Marshall Mix Design 41
3.6 Performance Tests on Marshall Samples 42
 3.6.1 Density and Voids Analysis 43
 3.6.2 Resilient Modulus Test 43
 3.6.3 Moisture Susceptibility Test 43
 3.6.4 Permanent Deformation Test 43
3.7 Cost Analysis 44

4 RESULTS AND DISCUSSION 45
4.1 Introduction 45
4.2 Physical Test Results of Aggregate 45
 4.2.1 Los Angeles Abrasion Test Results 45
 4.2.2 Aggregate Impact Value Test Results 46
 4.2.3 Aggregate Crushing Value Test Results 47
 4.2.4 Ten Percent Fine Test Results 47
 4.2.5 Soundness Test Results 48
 4.2.6 Flakiness and Elongation Test Results 49
 4.2.7 Specific Gravity Test Results 50
 4.2.8 Angularity Number Test Results 50
 4.2.9 Gradation of Aggregate 51
 4.2.10 Summary of Physical Test Results of Aggregate 52
4.3 Paint Content Analysis Result 53
4.4 Physical Test Results of Asphalt 55
 4.4.1 Proportioning of Asphalt and Waste Paint 55
 4.4.2 Viscosity Test Results 55
 4.4.3 Penetration Test Results 59
 4.4.4 Softening Point Test Results 61
4.4.5 Determination of Optimum Paint Modified Asphalt Content
4.4.6 Specific Gravity Test Results
4.4.7 Flash and Fire Point Test Results
4.5 Result of Marshall Mix Design
 4.5.1 Mixing and Compaction Temperature
 4.5.2 Theoretical Maximum Density
 4.5.3 Optimum Asphalt Content (OAC)
4.6 Performance Analysis of Paint Modified SMA Mix
 4.6.1 Density and Void Analysis Test Results
 4.6.2 Resilient Modulus Test Results
 4.6.3 Moisture Susceptibility Test Result
 4.6.4 Permanent Deformation Test Result
 4.6.5 Summary of Performance Analysis of Paint Modified SMA Mix
4.7 Cost Analysis

5 CONCLUSION AND RECOMMENDATION
 5.1 Introduction
 5.2 Conclusions
 5.3 Recommendations
 5.4 Contributions

REFERENCES
APPENDICES
BIODATA OF STUDENT