UNIVERSITI PUTRA MALAYSIA

PROPERTIES OF RESIDUAL SOIL TREATED WITH SILICON DIOXIDE AND CEMENT

SAYED HESSAM BAHAMANI

FK 2013 20
PROPERTIES OF RESIDUAL SOIL TREATED WITH SILICON DIOXIDE AND CEMENT

By

SAYED HESSAM BAHMANI

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science

December 2013
COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the Degree of Master of Science

PROPERTIES OF RESIDUAL SOIL TREATED WITH SILICON DIOXIDE AND CEMENT

By

SAYED HESSAM BAHMANI

December 2013

Chairman: Prof. Bujang Bin Kim Huat, PhD
Faculty: Engineering

The present study addresses the effect of nano particles on engineering properties of residual soil from Malaysia. This study looks at the innovative work being done by nanotechnology and Nano-materials. Nanoparticles are particles whose dimensions can range between 1 to 100 nm. Due to their extremely small size in nano-scale (10^{-9}m) and ultra-high surface area, some nano particles show unique properties that can help to improve physical and mechanical properties of the materials. The residual soil is classified as a soil that is the in-situ weathered remnants of a pre-existing parent rock; the parent rock can be sedimentary, igneous or metamorphic, accordingly the term ‘residual soil’ covers a broad range of materials and possible engineering behaviour.

The study was conducted to investigate the effect of nano particles (SiO₂) with two different sizes 15 and 80 nm that mixed with water and after that add to residual soil treated by cement with different ratios. The investigation includes the evaluation of soil properties such as consistency, compaction, shear strength and hydraulic conductivity properties. Results of Atterberg limit tests showed that the plasticity index increased initially, but decreased at lesser percentage of additives. The addition of nano particles and Portland cement is found to increase the optimum water content but to decrease the maximum dry density weight of the mix soils. Their addition also resulted in significant improvement in unconfined compressive strength and modulus of elasticity after 7 and 28 days curing time. From the viewpoint of plasticity, compaction and strength characteristics, and economy, addition of 0.2 - 0.4% nano particles are recommended as useful amounts. The hydration products were determined by X-Ray diffraction (XRD), Scanning Electron Microscopy (SEM); moreover, the synthesized gels were exposed to different amounts of nano particles to determine their chemical stability and subsequently characterized by Fourier Transform IR Spectroscopy (FTIR). Their addition also resulted in significant improvement in unconfined compressive strength. The results showed that the addition of different amount of nano particles leads to C–S–H gel modification even in the very short term.
Abstrak tesis ini dikemukakan kepada Senat Universiti Putra Malaysia untuk memenuhi keperluan untuk Ijazah Master Sains

SIFAT TANAH RESIDUAL YANG DIRAWAT DENGAN SILIKON DIOKSIDA DAN SIMEN

Oleh

SAYED HESSAM BAHMANI

Disember 2013

Pengerusi: Prof. Bujang Bin Kim Huat, PhD
Fakulti: Kejuruteraan

Kajian ini mengenalpasti kesan zarah nano terhadap ciri tanah baki di Malaysia. Kajian ini mengkaji langkah-langkah innovatif dilakukan oleh teknologi nano dan bahan nano. Zarah nano adalah zarah yang mempunyai dimensi antara 1 hingga 100nm. Oleh sebab saiz zarah nano yang terlalu kecil (10⁻⁹m) dan luas permukaan yang terlalu tinggi, sesetengah zarah nano mempunyai ciri-ciri unik yang boleh meningkatkan ciri fizikal dan mekanikal bahan. Tanah baki dikategorikan sebagai tanah baki hasil rempuhan batu induk sama ada batu endapan, igneus atau metamorf.

Kajian ini dijalankan untuk mengkaji kesan zarah nano (SiO₂) dengan dua saiz yang berbeza, 15 dan 80nm yang dicampur dengan air dan ditambahkan tanah baki yang telah dirawat dengan simen dengan pelbagai kadar. Kajian meliputi penilaian ciri-ciri tanah seperti konsistensi, kepadatan, kekuatan dan kekuatan hidraulik. Hasil daripada ujian Had Atterberg menunjukkan indeks plastik meningkat pada awalnya tetapi menurun apabila peratusan penambah dikurangkan. Penambahan zarah nano dan simen Portland menyebabkan peningkatan kandungan air optimum tetapi menunjukkan penurunan berat ketumpatan kering tanah campur. Penambahan juga hasil yang signifikan bagi unconfined kekuatan mampatan tidak terkurung dan elastik modulus selepas 7 dan 28 hari pengawetan. Dari segi keplastikan, kemampatan, dan kekuatan dan ekonomi, penambahan sebanyak 0.2-0.4% zarah nano adalah disarankan sebagai satu kuantiti yang berkesan.

Penghidratan produk ditentukan dengan X-Ray (XRD), Scanning Elctron Microscopy (SEM); tambahan, gel sintesis didedahkan kepada pelbagai kuantiti zarah nano untuk menentukan kestabilan kimikal dan seterusnya dikategorikan dengan Fourier Transform IR Spectroscopy (FTIR). Penambahan tersebut juga menunjukkan perubahan signifikan terhadap kekuatan mampatan tidak terkurung. Hasil kajian menunjukkan bahawa penambahan zarah nano dalam pelbagai kuantiti mengalakkan modifikasi gel C–S–H dalam masa singkat.

PENGHIDRATAN PRODUK DITENTUKAN DENGAN X-RAY (XRD), SCANNING ELECTRON MICROSCOPY (SEM); TAMBahan, GEL SINTESIS DIDEKIRKAN KEPADA PELAGAI KUANTITI ZARAH NANO UNTUK MENENTUAN KEKUATAN MAMPATAN TIDAK TERKURUNG.
ACKNOWLEDGEMENTS

It is with great contentment I give thanks to the Almighty God, for showing his blessing at the completion of my research work.

I suppose is a privilege to express a few words of gratitude about my supervisory committee Prof. Dr. Bujang Kim Huat, my supervisor, Dr Haslinda as co supervisor. The financial support from the Research Management centre (RMC) of the UPM (Grant No. 5527094). In addition, thanks my advisor Dr. Afshin Assadi. They have guided me through their inspiring advice, and their unending quest for knowledge in accomplishing my task. They have been a guiding star in enlightening me of all the minutes’ detail of my work. I am deeply indebted for their mental support as well.

On a personal note, I am especially thankful to my parents, Houssein and Shahin, for their financial and strong mental supports. Also thanks my dear brother (Hamed) and my dear sister (Ghazal) for their words of encouragement in the hard time of my study. I warmly thank my friends Azadeh Bakhshipour.

Last but not least, I am thankful to Engineering Faculty University Putra Malaysia and all my friends in geotechnical laboratory. I hope Allah pay back all of their kindness that I have received during all these years.
I certify that a Thesis Examination Committee has met on date of viva voice to conduct the final examination of Sayed Hessam Bahmani on his thesis entitled “Effect of nano particles on properties of residual soil treated by cement” in accordance with Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master of Science.

Members of the Thesis Examination Committee were as follows:

Abdul Halim Ghazali, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia (UPM)
(Chairman)

Thamer Ahmed Mohamed, PhD
Professor
Faculty of Engineering
Universiti Putra Malaysia (UPM)
/Internal Examiner

Farah Nora Aznieta Abd. Aziz, PhD
Doctor
Faculty of Engineering
Universiti Putra Malaysia (UPM)
/Internal Examiner

Satoru Kawasaki, PhD
Associate Professor
Division of Sustainable Resources Engineering
Hokkaido University, Japan
(External Examiner)

SEO HENG FONG, PHD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 30/12/2013
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory committee were as follows:

Bujang Bin Kim Huat, PhD
Professor
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Haslinda Nahazanan, PhD
Senior Lecturer
Faculty of Engineering
Universiti Putra Malaysia
(Member)

BUJANG BIN KIM HUAT, PHD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

Declaration by graduate student

I hereby confirm that:

- this thesis is my original work;
- quotations, illustrations and citations have been duly referenced;
- this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- There is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: _______________________ Date: 30 December 2013

Name and Matric No.: Sayed Hessam Bahmani (GS29571)
Declaration by Members of Supervisory Committee

This is to confirm that:

- the research conducted and the writing of this thesis was under our supervision;
- Supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature: _______________ Signature: _______________
Name of Chairman of Supervisory Committee: Prof. Dr. Bujang Bin Kim Huat
Name of Member of Supervisory Committee: Dr. Haslinda Nahazanan
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>ABSTRACT</th>
<th>ABSTRAK</th>
<th>ACKNOWLEDGEMENTS</th>
<th>APPROVAL</th>
<th>DECLARATION</th>
<th>LIST OF TABLES</th>
<th>LIST OF FIGURES</th>
<th>LIST OF ABBREVIATIONS</th>
<th>LIST OF SYMBOLS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>XI</td>
<td>XII</td>
<td>XVI</td>
<td>XVII</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION

1.1 General
1.2 Problem statement
1.3 Objectives
1.4 Scope of Study
1.5 Thesis Layout

2 LITERATURE REVIEW

2.1 Introduction
2.2 Tropical residual soil
2.2.1 Weathering
2.2.2 Profile and Heterogeneity
2.2.3 Tropical residual soil weathering profile
2.3 Nanotechnology
2.3.1 Definition of nanotechnology
2.3.2 Nano particles
2.3.3 The nomenclature ‘nanoparticles’
2.3.4 Principle of manufacturing nano materials
2.4 Cement
2.4.1 Cement hydration
2.4.2 Types of cement
2.5 Soil-cement stabilization
2.5.1 Hardening of soil-cement
2.5.2 Soil properties in soil-cement mixture
2.5.3 Strength-Age relationship
2.5.4 Minimum strength requirements of soil-cement
2.6 Nanotechnology and its applications in civil engineering
2.7 Summary
MATERIALS AND METHODS

3.1 Materials
- Overview of methodology (19)
- Residual tropical soil (19)
 - Study area of Hulu Langat (19)
 - Location (20)
 - Field data collection procedure (21)
 - Field activities (22)
- Soil sampling (22)
- Site condition (23)
- Silicon dioxide nano particles (23)
- Cement (25)
- Residual tropical soil (19)

3.2 Methods
- Introduction (25)
- Soil index properties (26)
 - Oven drying method (26)
 - Soil description and preparation soil samples (26)
 - Drying of samples (26)
 - Moisture content (27)
- Particle size distribution of soil samples (27)
 - Determination of particle size distribution (27)
 - Unified soil classification system (USCS) (27)
- Atterberg limits (27)
- Linear shrinkage (28)
- Determination particle density (28)
- Determination bulk density (29)
- Proctor standard (Compaction) (30)
- Hydraulic conductivity (31)
- Void ratio (32)
- Porosity (32)
- pH values (32)
- Preparation UC specimens (33)
 - Cement dosage and mix design (33)
 - Preparation of UC soil-nano specimens (34)
 - Curing of UC specimen (36)
- Unconfined compressive strength (36)
- Chemical analysis of materials (37)
- X-Ray Diffraction (XRD) (37)
- Scanning Electron Microscopy (SEM) (38)
- Fourier Transform Infrared Spectroscopy (FTIR) (39)

3.3 Summary (40)
RESULT AND DISCUSSION

4.1 Introduction

4.2 Soil engineering properties

4.2.1 Natural moisture content

4.2.2 Distinction of soil samples with sieve analysis

4.2.3 Atterberg limits of soil samples, Casagrande method

4.2.4 Linear shrinkage

4.2.5 Particle density of the soil sample

4.2.6 Compaction properties of the soil

4.2.7 Hydraulic conductivity

4.2.8 Void ratio

4.2.9 Porosity

4.2.10 pH values test

4.2.11 X-Ray diffraction (XRD)

4.2.12 Scanning Electron Microscopy (SEM)

4.2.13 Unconfined compressive strength

4.2.14 Summary properties of residual soil

4.3 Effect of nano particles on Atterberg limits, Casagrande method

4.4 Effect of nano particles on linear shrinkage

4.5 Effect of nano particles on compaction characteristics

4.6 Effect of nano particles on shear strength (Curing 7 days)

4.7 Effect of nano particles on shear strength (Curing 28 days)

4.8 Effect of nano particles on hydraulic conductivity

4.9 Effect of nano particles on the pH value

4.10 X-Ray diffraction (XRD)

4.11 Scanning Electron Microscopy (SEM)

4.12 Fourier Transform Infrared Spectroscopy (FTIR)

5 CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

5.3 Recommendations

REFERENCES

APPENDICES

Appendix 1: Laboratory Investigation

Appendix 2: Some Pictures of Laboratory Work

BIODATA OF STUDENT

LIST OF PUBLICATION