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RESERVOIR INFLOW FORECASTING USING ARTIFICIAL NEURAL 
NETWORK AND ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM 

TECHNIQUES 
 

By 
 

SHAHRAM KARIMI GOOGHARI 
 

December 2007 
 

Chairman: Professor Ir. Lee Teang Shui, PhD 

Faculty:     Engineering 
 
 
A feed forward Artificial Neural Network (ANN) and an Adaptive Neuro-Fuzzy 

Inferences System (ANFIS) reservoir inflow models were developed to 

investigate their potential in forecasting reservoir inflows. The site for the 

study is the Sembrong dam catchment which is located about 10km from Air 

Hitam town on the Air Hitam-Kluang road in the state of Johor, with an area 

of 130 square kilometers. The models consists of 9 inputs (previous last five-

day reservoir inflow and last four-day average rainfall across the catchment) 

and are able to forecast the next day inflow into the reservoir. Average 

rainfall across the catchment was calculated by Theissen polygons. The 6 

years daily data from 1995-1997 and 2002-2004 were used for training and 

validation of the models. Cross validation of training and validation data sets 

was also considered to obtain the best data set. Daily reservoir inflow was 

computed using a water balance equation. The reservoir inflow and rainfall 

data sets were examined for normal distribution and the best data 

transformation was used.  Autocorrelation, partial autocorrelation and cross 
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correlation functions were used to find the best model inputs. The ANN 

models were trained and simulated using a written program in MATLAB 

environment (M-file) with raw and transformed data.  The ANFIS models 

were built using the Fuzzy Toolbox of MATLAB. The Subtractive Clustering 

(SC) technique was employed to find the optimal number of rules. Different 

ANFIS structures were constructed by changing the SC parameters. All 

models were trained by the ANFIS editor of MATLAB with hybrid method. An 

M-file was written for calculating the different performance criteria of ANFIS 

models after simulating models during training, validation and testing. After 

selecting the best ANFIS structure, the response of the model to different 

types of membership functions was investigated. 

 

The models were tested with the 10 months daily data of 2005. The best 

architecture of the ANN model was a 9-13-1 model which means a model 

with 9 inputs, 1 hidden layer with 13 neurons and 1 output.  The model was 

trained based on the Leven-berg Marquardt algorithm with sigmoid activation 

functions. Simulation results for the independent testing data series showed 

that the model can perform well in simulating peak flows as well as base 

flows. The ANN model has been constructed for a strong non-linear 

input/output data. Comparisons of different ANN models for different data 

sets revealed that cross validation of data was effective in improving models 

performances. Data pre-processing to transform data to normal distribution 

before the training, results in better generalization and persistency of ANN 

models during testing.  
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The ANFIS models were built using the best data subset resulting from ANN 

modeling. The models were trained with normalized and non-normalized 

data. The selected ANFIS model was trained with normalized data with 6 

Gaussian membership functions for each of 9 inputs and 6 rules. 

Comparisons of different performances of ANFIS models showed that data 

normalization can improve the model performances during training and 

testing. Simulation results for the independent test data series by the ANFIS 

model showed the ability of this model to forecast daily reservoir inflow in a 

tropical ungauged catchment. Sensitivity of the ANFIS model using different 

types of membership functions indicated that the best one is the Gaussian 

membership function.  

 

The simulation results from the selected ANFIS and ANN models during 

training, validation and testing revealed the superiority of the ANN model. 

The selected ANFIS model gives lower values in most of the performance 

indices during training. For validation and testing, all performance indices of 

selected ANFIS model were inferior to those of the ANN model. The 

weakness of ANFIS model is shown in its inability to forecast individual peak 

flows. The sudden flow changes in these small tropical catchments resulting 

in these peak flows are common due to their small areal extent and to the 

intense localized phenomenon of tropical showers.  

 

Keywords: ungauged tropical catchment, reservoir inflow forecasting model, 
artificial neural networks, neuro-fuzzy inference system, data 
transformation, data clustering. 
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PERAMALAN ALIRAN MASUK TAKUNGAN MENGGUNAKAN TEKNIK 

RANGKAIAN SARAF DAN TEKNIK SISTEM TAABIR KELAM 
SARAFSUAI 

 
 

Oleh 
 

SHAHRAM KARIMI GOOGHARI 
 

Desember 2007 
 

Pengerusi: Profesor Ir. Lee Teang Shui, PhD  

Fakulti:       Kejuruteraan 
 

Model peramalan Rangkaian Saraf Buatan suapan ke depan (ANN) dan 

model peramalan Sistem Taabir Kelam Saraf Suai (ANFIS) bagi aliran masuk 

takungan telah dibangunkan untuk menyiasat pontensinya bagi meramal 

aliran masuk takungan. Tapak kajian ialah kawasan tadahan Empangan 

Sembrong, sebuah kawasan tadahan tropika 130 kilometer persegi, terletak 

10km dari bandar Air Hitam di Jalan Air Hitam ke Kluang di dalam Negeri 

Johor. Model mengandungi sembilan masukan, aliran masuk lima-hari 

terakhir dan purata hujan empat-hari terakhir di kawasan tadahan dan boleh 

digunakan untuk meramalkan aliran masuk takungan pada hari selepasnya. 

Hujan purata di kawasan tadahan dikira dengan membentuk poligon 

Theissen. Data harian selama enam tahun daripada 1995-1997 dan 2002-

2004 telah diguna untuk latihan dan pengesahan model.Pengesahan silang 

data diambilkira untuk menghasilkan set data terbaik. Aliran masuk takungan 

harian dikira dengan persamaan perseimbangan air.  Data aliran masuk 

takungan dan hujan diperiksa untuk taburan normal dan  penjelmaan data 
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terbaik telah diguna. Autosekaitan, autosekaitan separa dan fungsi sekaitan 

silang telah diguna untuk menghasilkan masukan model terbaik. Model ANN 

dilatih dan disimulasikan menggunakan program ditulis dalam sekitaran 

MATLAB dengan menggunakan data asas dan terjelma. Model ANFIS 

dibangunkan menggunakan Fuzzy Toolbox MATLAB. Teknik gugusan 

subtraktif telah digunakan untuk mendapatkan jumlah peraturan optimum. 

Struktur ANFIS yang berbeza telah dibina dengan menukar parameter 

gugusan subtraktif. Semua model telah dilatih menggunakan Penyunting 

ANFIS MATLAB dengan kaedah kacukan. Satu- fail-M ditulis bagi mengira 

kriteria berbeza perlakuan model ANFIS selepas model disimulasi pada 

masa latihan, pengesahan dan pengujian. Selepas struktur ANFIS terbaik 

dipilih, respon model kepada jenis fungsi keahlian yang berbeza telah 

disiasat. 

 

Model tersebut telah diuji dengan data harian sepanjang sepuluh bulan 

dalam 2005. Seni bina terbaik model ANN ialah 9-13-1 yang bermakna 9 

masukan, 1 lapisan tersembunyi dengan 13 neuron dan 1 keluaran. Model itu 

dilatih berdasarkan algoritma Leven-berg Marquardt dengan fungsi 

pengaktifan sigmoid. Keputusan simulasi untuk siri data ujian tak bersandar 

menunjukkan bahawa model boleh  berprestasi baik bagi aliran kemuncak 

serta aliran asas. Model ANN dibentuk untuk data masukan/keluaran tak-

linear yang padu. Perbandingan model ANN yang berbeza  bagi set data 

berlainan, menunjukkan bahawa pengesahan silang data berkesan untuk 

memperbaiki prestasi model. Pra-proses data untuk menghasilkan data ke 

taburan normal sebelum latihan menghasilkan model ANN yang lebih baik 

ketika diuji. 
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Model ANFIS dibangunkan menggunakan subset data terbaik hasil daripada 

pemodelan ANN. Model diuji dengan data ternormal dan tak-ternormal. 

Model ANFIS terpilih diuji dengan data ternormal dengan 6 fungsi keahlian 

Gaussian bagi setiap 9 masukan dan 6 peraturan. Perbandingan prestasi 

berbeza model ANFIS menunjukkan bahawa penormalan data boleh 

memperbaiki prestasi model semasa latihan dan ujian. Keputusan simulasi  

bagi siri data ujian tak bersandar oleh model ANFIS menunjukkan kebolehan 

model itu untuk meramalkan aliran masuk takungan harian di dalam sebuah 

kawasan tadahan tropika yang tak bertolok. Kepekaan model ANFIS yang 

disemak berdasarkan jenis fungsi keahlian yang berbeza mununjukkan 

bahawa fungsi keahlian Gaussian adalah yang terbaik. 

 

Keputusan simulasi daripada model ANFIS dan ANN terpilih semasa latihan, 

pengesahan dan ujian mendedahkan kelebihan model ANN. Model ANFIS 

yang terpilih itu menghasilkan nilai lebih rendah bagi kebanyakan indeks 

prestasi semasa latihan. Bagi pengesahan dan ujian, semua indeks prestasi 

model ANFIS pilihan adalah kurang baik daripada yang dihasilkan oleh 

model ANN. Kelemahan model ANFIS dalam meramalkan alir masuk 

kemuncak adalah nyata. Perubahan aliran mengejut di dalam kawasan 

tadahan tropika yang kecil adalah biasa oleh kerana keluasan yang kecil dan 

oleh kerana fenomena hujan tropika yang lebat dan setempat.  
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