APPLICATION OF DATA MINING TECHNIQUES FOR ECONOMIC EVALUATION OF AIR POLLUTION IMPACT AND CONTROL

IING LUKMAN

FPAS 2007 7
APPLICATION OF DATA MINING TECHNIQUES FOR ECONOMIC EVALUATION OF AIR POLLUTION IMPACT AND CONTROL

IING LUKMAN

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

August 2007
To all my family,

My teachers, IPB, UPM,

and Tanah Air...... Indonesia
APPLICATION OF DATA MINING TECHNIQUES FOR ECONOMIC EVALUATION OF AIR POLLUTION IMPACT AND CONTROL

By

IING LUKMAN

August 2007

Chairman: Associate Professor Mohd Nasir Hassan, PhD

Faculty : Environmental Studies

In this research we examine aspects of the interdependence between economic development and the use of environmental and natural resources assets from global data published by United Nations. For that purpose, we use data mining techniques.

Data mining techniques applied in this thesis were: 1) Group method of data handling (GMDH), originally from engineering, introducing principles of evolution - inheritance, mutation and selection - for generating a network structure systematically to develop the automatic model, synthesis, and its validation; 2) The weighted least square (WLS) and step wise regression were also applied for some cases; 3) The classification-based association rules were applied.
Data sets for this research consist of two sets integration data of air quality data and macroeconomic data of the cross-country data of World Development Indicator 2003 (WDI 2003), and from www.nationmaster.com. The results from www.nationmaster.com were as follows: the corruption index was strongly related to the urban SO₂ concentration. The corruption index along with NOₓ emission has big contribution to the debt. Debt is the debt of the home country to the foreign country or external debt or foreign debt.

The result from WDI 2003 shows that the mortality rate of children under five years old depended on sanitation and water facilities obtained from GMDH results. However, the results from stepwise regression shows that mortality rate was dependent on annual deforestation, particulate matter, nationally protected area, but the big contribution was from annual deforestation.

Based on GMDH, new Gross National Income (GNI) formula was found. Previously GNI was known as Gross National Product (GNP). It was different from the common formula of GNP. The formula or equation model of urban SO₂ concentration was also found through the GMDH algorithms. The results were then compared to WLS and Stepwise regression.

The debt was found by GMDH to be dependent on the corruption index as well as urban SO₂ concentration. Corruption index along with NOₓ emission were related to debt.
Results from weighted least square using SAS software showed that the corruption index was significant to the concentration of urban SO$_2$.

Results from classification rules of the WDI 2003 data showed that the more energy imports net from foreign country was associated with the smaller in adjusted net saving in home country. Energy imports net were calculated as energy use in oil equivalents. This indicated that if the energy imports net was higher, then the adjusted net saving was small, and then CO$_2$ emissions was small also. Thus, to reduce global warming in home country, a country can import energy from foreign country. According to the result from association rules on nationamaster.com data there were indication that corruption index was related with higher urban SO$_2$ concentration, and inflation.

Results from association rules of item sets shows that the urban SO$_2$ always follows the direction of corruption index. In addition, if any country wants to reduce the urban SO$_2$ concentration, more works can be conducted on controlling corruption index than controlling SO$_2$ emission per populated area.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

APLIKASI TEKNIK PERLOMBONGAN DATA UNTUK PENILAIAN EKONOMI BAGI IMPAK DAN KAWALAN PENCEMARAN UDARA

Oleh

IING LUKMAN

Ogos 2007

Pengerusi: Profesor Madya Mohd Nasir Hassan, PhD

Fakulti: Pengajian Alam Sekitar

Dalam kajian ini, aspek saling bergantung antara pembangunan ekonomi dengan penggunaan harta alam sekitar dan sumber semulajadi daripada data global yang diterbitkan oleh Bangsa-bangsa Bersatu dikaji. Bagi tujuan itu, kami gunakan kaedah-kaedah perlombongan data.

Kaedah perlombongan data yang digunakan dalam tesis ini adalah: 1) Kaedah kumpulan dalam pengendalian data (GMDH) berasal dari bidang kejuruteraan yang memperkenalkan prinsip evolusi –warisan, mutasi dan pilihan – untuk menjana satu struktur rangkaian yang teratur dalam pembinaan model automatik, sintesis and pengesahannya; 2) Regresi kuasa-dua berpem berat (WLS) dan regresi langkah cerdik juga diaplikasikan untuk sesetengah kes; 3) Peraturan asosiasi berasaskan klasifikasi digunakan.
Set data untuk kajian ini terdiri daripada dua set integrasi data dari data kualiti udara dan
data makroekonomi dari kumpulan data serata dunia dari penunjuk pembinaan dunia
www.nationmaster.com adalah seperti berikut: indeks rasuah berkait rapat dengan
kandungan urban S02. Indeks rasuah berserta kepulan NOx memiliki sumbangan yang
besar kepada hutang. Hutang bermakna hutang sesebuh negara sendiri ke negara asing
atau hutang ke dunia luar atau hutang ke negara luar.

Keputusan dari WDI 2003 menunjukkan bahawa kadar kematian kanak-kanak dibawah
umur lima tahun bergantung kepada kebersihan dan fasiliti air yang diperolehi dari
keputusan GMDH. Walau bagaimanapun, keputusan dari regresi langkah cerdik
menunjukkan kadar kematian bergantung kepada kepupusan setiap tahun kawasan
perhutanan, jirim debu halus, kawasan lindungan negara, tetapi sumbangan besar yalah
dari kepupusan setiap tahun kawasan perhutanan.

Berasaskan pada GMDH, kemudiannya formula pendapatan kotor kebangsaan (GNI)
yang baru telah ditemui. Dahulunya GNI dikenali sebagai hasil kotor kebangsaan (GNP).
Ianya berbeza dengan formula biasa hasil kotor kebangsaan. Formula atau persamaan
model kandungan urban SO2 juga ditemui menggunakan algoritma GMDH.
Keputusannya kemudian diperbandingkan dengan keputusan dari WLS dan regresi
langkah cerdik.
Hutang ditemui oleh GMDH sebagai bergantung pada indeks rasuah seperti mana kandungan urban SO\textsubscript{2}. Index rasuah bersama dengan kepulan NO\textsubscript{x} berkait kepada hutang. Keputusan dari WLS menggunakan perisian SAS menunjukkan bahawa indeks rasuah penting kepada kandungan urban SO\textsubscript{2}.

Keputusan dari peraturan klasifikasi daripada data WDI 2003 menunjukkan bahawa lebih banyaknya impot bersih tenaga dari negara asing berkaitan dengan simpanan bersih terubahsuai yang kecil di negara sendiri. Impot tenaga bersih dicongak sebagai penggunaan tenaga yang disamakan dengan penggunaan minyak. Ini bermakna bahawa jika impot bersih tenaga adalah tinggi, maka simpanan bersih terubahsuai adalah kecil, dan kepulan CO\textsubscript{2} pun kecil. Maka, untuk mengurangkan kepanasan global di negara sendiri, sebuah negara boleh mengimpor tenaga dari negara asing. Berasaskan pada keputusan dari peraturan asosiasi pada data nationmaster.com ada tanda bahawa indeks rasuah berkait dengan kandungan urban SO\textsubscript{2} dan juga inflasi.

Keputusan dari peraturan asosiasi daripada set-set item menunjukkan bahawa urban SO\textsubscript{2} selalu mengikut hala indeks rasuah. Dengan demikian, jika sebuah negara ingin mengurangkan kadar kandungan urban SO\textsubscript{2}, lebih banyak kerja yang boleh dilaksanakan dengan mengawal indeks rasuah daripada dengan mengawal kepulan SO\textsubscript{2} pada setiap kawasan penduduk.
ACKNOWLEDGEMENTS

All praises do to Allah SWT, Lord of the universe. Only by His grace and mercy this thesis can be completed.

I wish to express my sincere thanks to my supervisor Associate Prof. Dr. Mohd Nasir Hassan for his invaluable guidance, support and continuous encouragement throughout the course of the project.

My gratitude also goes to the member of my supervisory committee, Assoc. Prof. Dr. Noor Akma Ibrahim for unending helps during my study, starting from giving me guidance, great advice, until trying to find me some alternative resource fund for my living costs, and providing much time for the methodology discussion, and checking the whole content of this thesis draft. My gratitude also goes to another supervisory committee Assoc. Prof. Dr. Md Nasir Sulaiman for his useful suggestions and helpful comments during the preparation of this thesis.

I also wish to express my sincere gratitude to Dr. Gregory Alexander Ivakhnenko from National Institute for Strategic Studies of the Council of National Security and Defense of Ukraine, Kiev, Ukraine for sending me the GMDH Software and its source codes, and also to Dr Bing Liu from National University of Singapore for obtaining the CBA Software.
Grateful acknowledgement is made to Malaysian Government, Universiti Putra Malaysia, and Department of Mathematics for giving me a room for doing research.

Financial supports from Malaysian Government under the IRPA programme during my time of study, financial supports from my siblings (especially Ali Abdurrahman SH, MH and Drs Aziz Taufik Hirzi, MSi) and from best friend Ir. Slamet Soedarsono, MSc of BAPPENAS Jakarta, and from excellent friend Ir. Elfajri Hanif, Jakarta, and from Uni Sjarkiah Muhammad Yasie, Kelantan, all are gratefully acknowledged.

Special thanks are extended to other members of the academic and technical staff of the Mathematics Department, Institut Penyelidikan Matematik (INSPEM), and Environmental Studies Faculty (especially Assoc. Prof. Dr. M Pauzi Zakaria), students and friends who helped me in every way possible and providing a congenial and enthusiastic atmosphere in the laboratory.

Acknowledgement is also extended to Indonesian Student Association, for giving me moral supports, the sweet friendship that made life easier during my difficult-time in Malaysia, especially to Dollaris Riauaty Suhadi, Abdul Kudus, and Aris Slamet Widodo.

I wish to express my deepest gratitude to my late parents, brothers and sisters for their prayers, continuous moral support and unending encouragement.
Last but not least, I wish especially to acknowledge my beloved wife, Dr Maria Viva Rini, and my dearest sons (Tanukh and Fatih) and daughters (Haifa, Putri, and Ghaida) for their love, support, patience and understanding.
I certify that an Examination Committee met on 20 April 2007 to conduct the final examination of Iing Lukman on his Doctor of Philosophy thesis entitled “Data Mining for Economic Evaluation of Air Pollution Impacts and Controls” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Ahmad Makmum Abdullah, PhD
Associate Professor
Department of Environmental Management
Faculty of Environmental Studies
Universiti Putra Malaysia
(Chaiman)

Latifah Binti Abd Manaf, PhD
Lecturer (Assistant Professor)
Department of Environmental Sciences
Faculty of Environmental Studies
Universiti Putra Malaysia
(Internal Examiner)

Isa Bin Daud, PhD
Associate Professor
Department of Mathematics
Faculty of Science
Universiti Putra Malaysia
(Internal Examiner)

Abdul Razak Bin Hamdan, PhD
Professor
Department of System and Management Sciences
Faculty of Information Science and Technology
Universiti Kebangsaan Malaysia
(External Examiner)

HASANAH MOHD. GHAZALI, PhD
Professor / Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee are as follows:

Mohd Nasir Hassan, PhD
Associate Professor
Faculty of Environmental Studies
Universiti Putra Malaysia
(Chairman)

Noor Akma Ibrahim, PhD
Associate Professor
Faculty of Science
Universiti Putra Malaysia
(Member)

Md Nasir Sulaiman, PhD
Associate Professor
Faculty of Computer Science and Information Technology
Universiti Putra Malaysia
(Member)

AINI IDERIS, PhD
Professor /Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 9 August 2007
DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at Universiti Putra Malaysia or other institutions.

IING LUKMAN

Date: 13 July 2007
TABLE OF CONTENTS

DEDICATION ii
ABSTRACT iii
ABSTRAK vii
ACKNOWLEDGEMENTS x
APPROVAL xiii
DECLARATION xv
LIST OF TABLES xviii
LIST OF FIGURES xxvi
LIST OF ABBREVIATIONS xix

CHAPTER

I INTRODUCTION 1
Economic Evaluation of Air Pollution 2
Air Pollution Impacts 2
Data Mining Approach 8
Air Pollution Scenario 19
Problem Statement 22
Scope of the Research 23
Objective of the Research 24
Organisation of the Study 24

II LITERATURE REVIEW 26
Critical Review of Macroeconomic-Environmental Air Pollution 26
Critical Review of Methodology 28
Why Data Mining is Needed 35
Theory-driven Approach 36
Data-driven Approach 37
Data Mining in the Analysis of Air Pollution Data 38
Application of GMDH Algorithms 43
Financial Systems 43
Ecological Process 45
Control Application 46
Other Application 47

III METHODOLOGY 50
General Experimental Methods 50
The Steps of Research Methodology in Data Mining
Data Selection 52
Data Cleansing 54
EM Algorithm for Data with Missing Values 55
Hot-deck Imputation 57
Data Enrichment and Coding 59
Data Mining Process 59
Variables for Computation from Nationmaster.com Data 61
Result Interpretation and Validation 66
Incorporation of the Discovered Knowledge 66
Report Writing 66
Group Method of Data Handling (GMDH) 69
The Steps of the GMDH Algorithm 71
Sorting of Models by Groups of Equal Structure 76
External and Internal criteria 76
Physical and Nonphysical Models 77
Deductive and Inductive GMDH Algorithms 78
The problem of Identifying Physical Laws 79
Identify Laws for Noisy Data and Short Samples 81
Basis of the Multilayered Theory of Statistical Decision 83
Normative vector Forecasting for Macroeconomic System 83
Mining Association Rules with Multiple Minimum Supports 94
The Extended Model 98
Mining Large Itemsets with Multiple MISs 100
Downward Closure Property 100
The Algorithm 101
Algorithm MSapriori 103
Candidate Generation 105
Correctness of level2-candidate-gen 105
Subset Function 108
Rule Generation 109
Association Rule Generation Algorithm 109
Problems and Solutions 111
Algorithm New MSapriori 113
Application to Real-Life Data 114
Related Work 114

IV RESULTS AND DISCUSSION 116
Chapter Overview 116
GMD Computation from Nationmaster.com Data 117
GNI Model Development 117
Urban SO₂ Concentration Model Development 127
Debt of the Countries Model Development 159
The Stepwise Procedure 168
Corruption Index Model Development 179
GMDH Computation from WDI 2003 Data 186
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Develop Under 5 Years old Mortality Rate Model Computation</td>
<td>186</td>
</tr>
<tr>
<td>The Stepwise Procedure</td>
<td>192</td>
</tr>
<tr>
<td>CO₂ Emission Per Capita Model Development</td>
<td>200</td>
</tr>
<tr>
<td>Stepwise Procedure</td>
<td>207</td>
</tr>
<tr>
<td>Classification Rules of WDI 2003</td>
<td>215</td>
</tr>
<tr>
<td>Results for Single Support</td>
<td>218</td>
</tr>
<tr>
<td>Classification Rules from nationmaster.com data set</td>
<td>222</td>
</tr>
<tr>
<td>Discussion and Policy</td>
<td>228</td>
</tr>
<tr>
<td>Discussion</td>
<td>228</td>
</tr>
<tr>
<td>Advantage of Data Mining Techniques</td>
<td>230</td>
</tr>
<tr>
<td>Policies</td>
<td>233</td>
</tr>
<tr>
<td>V CONCLUSION</td>
<td>239</td>
</tr>
<tr>
<td>BIBLIOGRAPHY</td>
<td>246</td>
</tr>
<tr>
<td>APPENDICES</td>
<td>257</td>
</tr>
<tr>
<td>BIODATA OF THE AUTHOR</td>
<td>323</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>The difference between data mining and typical operational system (Adapted from Berry and Linoff, 2004)</td>
<td>14</td>
</tr>
<tr>
<td>3.1</td>
<td>Illustration of Hot Deck Imputation, Data Matrix with Incomplete Data</td>
<td>57</td>
</tr>
<tr>
<td>3.2</td>
<td>Illustration of Hot Deck Imputation, Data Matrix with Imputed Data</td>
<td>58</td>
</tr>
<tr>
<td>3.3</td>
<td>Data lay-out of Environmental economic data from Nationamaster.com</td>
<td>64</td>
</tr>
<tr>
<td>3.4</td>
<td>Data lay-out of World Development Indicator 2003</td>
<td>65</td>
</tr>
<tr>
<td>4.1</td>
<td>Results of Process finding the model layer by layer, where GNI is the goal function</td>
<td>118</td>
</tr>
<tr>
<td>4.2</td>
<td>Polynomial coefficients, where GNI is the goal function</td>
<td>122</td>
</tr>
<tr>
<td>4.3</td>
<td>MSE, MAPE, r, and R^2 for polynomial in Table 4.2</td>
<td>123</td>
</tr>
<tr>
<td>4.4</td>
<td>Model values calculated on validation sub-sample</td>
<td>125</td>
</tr>
<tr>
<td>4.5</td>
<td>Results of Process finding the model layer by layer, where Urban SO$_2$ is the Goal function</td>
<td>128</td>
</tr>
<tr>
<td>4.6</td>
<td>The Polynomial Coefficients, where Urban SO$_2$ is the goal function</td>
<td>131</td>
</tr>
<tr>
<td>4.7</td>
<td>MSE, MAPE, r, and R^2 for polynomial in Table 4.6</td>
<td>132</td>
</tr>
<tr>
<td>4.8</td>
<td>Model values calculated on validation sub-sample</td>
<td>132</td>
</tr>
<tr>
<td>4.9</td>
<td>The Reg Procedure of model 1, where UrbSO$_2$ is dependent variable</td>
<td>137</td>
</tr>
<tr>
<td>4.10</td>
<td>Parameter Estimates of the WLS procedures of Table 4.9</td>
<td>138</td>
</tr>
<tr>
<td>4.11</td>
<td>The Reg procedure model 2, where dependent variable is UrbSO$_2$</td>
<td>139</td>
</tr>
</tbody>
</table>
4.12 Parameter Estimates of the WLS procedures of Table 4.11

4.13 The Reg procedure model 3, where dependent variable is: UrbSO2

4.14 Parameter Estimates of the WLS procedure of Table 4.13

4.15 The Regression procedure model 4, where dependent variable is UrbSO2

4.16 Parameter Estimates of the WLS procedure of Table 4.15

4.17 Stepwise Procedure of Maximum R-Square Improvement:
 Step 1

4.18 Parameter Estimates of Table 4.16, where Urban SO2 concentration is the dependent variable

4.19 Stepwise Procedure of Maximum R-Square Improvement:
 Step 2

4.20 Parameter Estimates of Table 4.19, where Urban SO2 concentration is the dependent variable

4.21 Stepwise Procedure of Maximum R-Square Improvement:
 Step 3

4.22 Parameter Estimates of Table 4.21, where Urban SO2 concentration is the dependent variable

4.23 Stepwise Procedure of Maximum R-Square Improvement:
 Step 4

4.24 Parameter Estimates of Table 4.23, where Urban SO2 concentration is the dependent variable

4.25 Stepwise Procedure of Maximum R-Square Improvement:
 Step 5

4.26 Parameter Estimates of Table 4.25, where Urban SO2 concentration is the dependent variable

4.27 Stepwise Procedure of Maximum R-Square Improvement:
 Step 6

4.28 Parameter Estimates of Table 4.27, where Urban SO2 concentration is the dependent variable
4.29 Stepwise Procedure of Maximum R-Square Improvement: Step 7

4.30 Parameter Estimates of Table 4.29, where Urban SO₂ concentration is the dependent variable

4.31 Stepwise Procedure of Maximum R-Square Improvement: Step 8

4.32 Parameter Estimates of Table 4.31, where Urban SO₂ concentration is the dependent variable

4.33 Stepwise Procedure of Maximum R-Square Improvement: Step 9

4.34 Parameter Estimates of Table 4.33, where Urban SO₂ concentration is the dependent variable

4.35 Stepwise Procedure of Maximum R-Square Improvement: Step 10

4.36 Parameter Estimates of Table 4.35, where Urban SO₂ concentration is the dependent variable

4.37 Stepwise Procedure of Maximum R-Square Improvement: Step 11

4.38 Parameter Estimates of Table 4.37, where Urban SO₂ concentration is the dependent variable

4.39 Stepwise Procedure of Maximum R-Square Improvement: Step 30

4.40 Parameter Estimates of Table 4.39, where Urban SO₂ concentration is the dependent variable

4.41 Results of Process finding the model layer by layer, where Debt of the countries is the Goal function

4.42 The Polynomial Coefficients, where debt is the goal function

4.43 MSE, MAPE, \(r \), and \(R^2 \) for polynomial in Table 4.42

4.44 Model values calculated on validation subsample
4.45 Stepwise Procedure of Maximum R-Square Improvement: Step 3
4.46 Parameter Estimates of Table 4.45, where Debt is the dependent variable
4.47 Stepwise Procedure of Maximum R-Square Improvement: Step 4
4.48 Parameter Estimates of Table 4.47, where Debt is the dependent variable
4.49 Stepwise Procedure of Maximum R-Square Improvement: Step 5
4.50 Parameter Estimates of Table 4.49, where Debt is the dependent variable
4.51 Stepwise Procedure of Maximum R-Square Improvement: Step 6
4.52 Parameter Estimates of Table 4.51, where Debt is the dependent variable
4.53 Stepwise Procedure of Maximum R-Square Improvement: Step 7
4.54 Parameter Estimates of Table 4.53, where Debt is the dependent variable
4.55 Stepwise Procedure of Maximum R-Square Improvement: Step 8
4.56 Parameter Estimates of Table 4.55, where Debt is the dependent variable
4.57 Stepwise Procedure of Maximum R-Square Improvement: Step 9
4.58 Parameter Estimates of Table 4.57, where Debt is the dependent variable
4.59 Stepwise Procedure of Maximum R-Square Improvement: Step 10
4.60 Parameter Estimates of Table 4.59, where Debt is the dependent variable

4.61 Results of Process finding the model layer by layer: Corruption Index of the countries as the Goal function

4.62 Polynomial coefficients of Table 4.61

4.63 MSE, MAPE, r, and R^2 for polynomial in Table 4.62

4.64 Model values calculated on validation subsample

4.65 Results of Process finding the model layer by layer: Children under five years old mortality rate of the countries as the Goal function

4.66 Polynomial coefficients of Table 4.65

4.67 MSE, MAPE, r, and R^2 for polynomial in Table 4.66

4.68 Model values calculated on validation subsample

4.69 Stepwise Procedure of Maximum R-Square Improvement: Step 5

4.70 Parameter Estimates of Table 4.69, where Under-five years old mortality rate is the dependent variable

4.71 Stepwise Procedure of Maximum R-Square Improvement: Step 6

4.72 Parameter Estimates of Table 4.71, where Under-five years old mortality rate is the dependent variable

4.73 Stepwise Procedure of Maximum R-Square Improvement: Step 7

4.74 Parameter Estimates of Table 4.73, where Under-five years old mortality rate is the dependent variable

4.75 Stepwise Procedure of Maximum R-Square Improvement: Step 14

4.76 Parameter Estimates of Table 4.75, where Under-five years old mortality rate is the dependent variable
4.77 Stepwise Procedure of Maximum R-Square Improvement: Step 31
4.78 Parameter Estimates of Table 4.77, where Under-five years old mortality rate is the dependent variable
4.79 Results of Process finding the model layer by layer: CO₂ emission Per capita as Goal function
4.80 Polynomial coefficients of Table 4.79
4.81 MSE, MAPE, \(r \), and \(R^2 \) for polynomial in Table 4.80
4.82 Stepwise Procedure of Maximum R-Square Improvement: Step 3
4.83 Parameter Estimates of Table 4.82, where CO₂ emission per capita is the dependent variable
4.84 Stepwise Procedure of Maximum R-Square Improvement: Step 9
4.85 Parameter Estimates of Table 4.84, where CO₂ emission per capita is the dependent variable
4.86 Stepwise Procedure of Maximum R-Square Improvement: Step 16
4.87 Parameter Estimates of Table 4.86, where CO₂ emission per capita is the dependent variable
4.88 Stepwise Procedure of Maximum R-Square Improvement: Step 56
4.89 Parameter Estimates of Table 4.88, where CO₂ emission per capita is the dependent variable
4.90 Mining Classification Rules from WDI 2003 Data set with number of training case is 205 with multiple supports.
4.91 Mining Classification Rules from WDI 2003 Data set with number of training case is 205 with single support.
4.92 Interesting itemset rules generated from mining association rules WDI 2003 data set out of 1865 itemset rules : MinSup:10.000%, MinConf:50.000% RuleLimit : 80000
4.93 Important Classification Rule mined from nationamaster data set, the Rules are generated at : MinSup:10.000%, MinConf:50.000% RuleLimit : 80000 LevelLimit : 6

4.94 Interesting itemsets rules generated from association rule mining for nationmaster data set from 929 rules generated. The Rules are generated at : MinSup:10.000%, MinConf:50.000% RuleLimit : 80000 LevelLimit : 4. NumTrainingCase== 95