UNIVERSITI PUTRA MALAYSIA

ENHANCED OPEN SHORTEST PATH FIRST (OSPF) PROTOCOL USING PARALLEL TABU SEARCH – RING IN WIMAX MESH NETWORK

BILAL ABDULHAQ AHMED

FK 2013 54
ENHANCED OPEN SHORTEST PATH FIRST (OSPF) PROTOCOL USING PARALLEL TABU SEARCH – RING IN WIMAX MESH NETWORK

By

BILAL ABDULHAQ AHMED

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science

August 2013
COPYRIGHT

All materials contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
Abstract of the thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

ENHANCED OPEN SHORTEST PATH FIRST (OSPF) PROTOCOL USING PARALLEL TABU SEARCH – RING IN WIMAX MESH NETWORK

By

BILAL ABDULHAQ AHMED

August 2013

Chair: Makhfudzah Binti Mokhtar, PhD

Faculty: Engineering

Wireless mesh networks (WMNs) considered as self – organized, self – configured networks, and easily deployed ad hoc networks. Many ad hoc routing protocols were applied to WMNs and many studies were conducted to analyse the functionality of such networks. Many studies have been done on ad hoc routing protocols in WIMAX environment especially OSPF due to its widely available in the real network implementation. However, there was no comparison been made between OSPF and other ad hoc routing protocols such as DSDV, and OLSR in WIMAX environment using mesh mode specifically in term of throughput, end to end delay, delivery ratio, and packet drop. As the technology of WIMAX using mesh mode is quite immature, this
study is aimed to investigate and compare the capability of OSPF with other ad hoc protocols in such technology environment. On the other hand, OSPF uses link bandwidth to assign the cost metric in an inversely proportional manner, while the delay is considered an important factor to determine the link cost. This study is intended to contribute for OSPF protocol optimization by presenting new cost function depend on both delay and bandwidth dedicated for WIMAX using mesh mode.

In this study a performance analyses has been made among Optimized Link State Routing (OLSR) protocol, Destination-Sequenced Distance Vector (DSDV) routing protocol, and an intra-domain link-state of Open Shortest Path First (OSPF). The analysis has been made under WIMAX environment using mesh mode. In our simulation, 10 to 50 mesh nodes were arranged in a mesh topology, with a working area of 500 meter x 500 meter. The transmission range of each node is 250 meters. The NS2 version 2.33 has been used as our simulator. It was found that the conventional OLSR has the worst performance when it’s compared to OSPF and DSDV in term of End to End delay, delivery ratio and drop ratio. The results showed the proposed extension of OSPF has better results than the conventional OSPF in terms of all the above parameters including the throughput.
Abstrak tesis ini dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

DIPERTINGKATKAN TERBUKA PATH TERPENDEK PERTAMA (OSPF) PROTOKOL MENGUNGGANKAN PARALLEL TABU SEARCH - RING IN WIMAX MESH RANGKAIAN

Oleh

BILAL ABDULHAQ AHMED

Ogos 2013

Pengerusi: Makhfudzah Binti Mokhtar, PhD

Fakulti: Kejuruteraan

Rangkaian tanpa wayar mesh (WMNs) dianggap sebagai diri-teratur, diri-rangkaian konfigurasi, dan rangkaian mudah digunakan ad hoc. Ramai ad hoc protokol routing telah digunakan untuk WMNs dan banyak kajian telah dijalankan untuk menganalisis fungsi rangkaian itu. Banyak kajian telah dilakukan ke atas protokol ad hoc routing dalam persekitaran WiMAX terutama OSPF kerana didapati secara meluas dalam pelaksanaan rangkaian sebenar. Walau bagaimanapun, tidak ada perbandingan dibuat antara OSPF dan lain-lain protokol ad hoc laluan seperti DSDV, dan OLSR dalam persekitaran WiMAX menggunakan mod jaringan khusus dari segi pemprosesan, hujung ke hujung kelewatan, nisbah penghantaran, dan drop paket. Sebagai teknologi
WiMAX menggunakan mod jaringan agak matang, kajian ini bertujuan untuk mengkaji dan membandingkan keupayaan OSPF dengan lain-lain protokol ad hoc dalam persekitaran teknologi sedemikian. Sebaliknya, OSPF menggunakan pautan jalur lebar untuk memberikan kos metrik secara berkadar songsang, manakala kelewatan itu dianggap sebagai faktor penting untuk menentukan kos pautan. Kajian ini bertujuan untuk menyumbang untuk OSPF pengoptimuman protokol dengan mengemukakan fungsi kos baru bergantung kepada kedua-dua kelewatan dan jalur lebar khusus untuk WiMAX menggunakan mod jaringan.

ACKNOWLEDGEMENT

First and foremost, I would like to express my deepest gratitude to Allah the Al Mighty for granting me the time and energy to complete this humble research.

I would also like to express my sincere gratitude to my supervisors Dr. Makhfudzah Binti Mokhtar and Dr. Aduwati Sali for the guidance, knowledge, understanding, and numerous hours spent helping me complete this research. I truly appreciate everything they have done for me as lecturers, supervisors and as friends. Their generosity and support will not be forgotten.

Appreciation is also extended to those who have given me pointers and advice on the usage of NS2, for their time and efforts.

I am also grateful to my most beloved parents and my brother for their understanding, encouragement and support over the past two years. Their encouragement provided the often-needed motivation for me to push through the hard times.

Finally, a lot of thanks to all staff of Faculty of Engineering, Universiti Putra Malaysia, also for all my friends, student of postgraduate of computer and communication Department for their support and cooperation throughout my study.
I certify that a Thesis Examination Committee has met on 19 August 2013 to conduct the final examination of Bilal Abdulhaq Ahmed on his thesis entitled "Enhanced Open Shortest Path First (OSPF) Protocol using Parallel Tabu Search – Ring in Wimax Mesh Network" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master of Science.

Members of the Thesis Examination Committee were as follows:

Syed Abd Rahman Al-Haddad b Syed Mohamed, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Mohd Fadlee bin A Rasid, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Internal Examiner)

Kaharuddin Dimyati, PhD
Professor
Universiti Pertahanan Nasional Malaysia
Malaysia
(Internal Examiner)

Mahamod Ismail, PhD
Professor
Universiti Kebangsan Malaysia
Malaysia
(External Examiner)

NORITAH OMAR, PhD
Associate Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 19 September 2013
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Makhfudzah Binti Mokhtar, PhD
Senior Lecturer
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Aduwati Sali, PhD
Senior Lecturer
Faculty of Engineering
Universiti Putra Malaysia
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 27 September 2013
DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institutions.

BILAL ABDULHAQ AHMED ALMAHDAWI

Date: 19 August 2013
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>iv</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>vi</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>vii</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>ix</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xvii</td>
</tr>
<tr>
<td>CHAPTER</td>
<td></td>
</tr>
<tr>
<td>1 INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Wireless Mesh Networks</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Routing Protocols in WMNs</td>
<td>5</td>
</tr>
<tr>
<td>1.3 IEEE 802.16 (Wimax)</td>
<td>6</td>
</tr>
<tr>
<td>1.3.1 Modes of Wimax</td>
<td>6</td>
</tr>
<tr>
<td>1.4 Problem Statement</td>
<td>7</td>
</tr>
<tr>
<td>1.5 Research Objectives</td>
<td>8</td>
</tr>
<tr>
<td>1.6 Summary</td>
<td>9</td>
</tr>
<tr>
<td>1.7 Thesis Organisation</td>
<td>9</td>
</tr>
<tr>
<td>2 LITERATURE REVIEW</td>
<td>10</td>
</tr>
<tr>
<td>2.1 Routing Protocols on Wireless Mesh Networks</td>
<td>10</td>
</tr>
<tr>
<td>2.2 Flat Routing Protocols</td>
<td>11</td>
</tr>
<tr>
<td>2.2.1 Proactive Routing Protocols (Table-driven)</td>
<td>12</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>2.2.2</td>
<td>Reactive Protocols (On-demand)</td>
</tr>
<tr>
<td>2.2.3</td>
<td>Comparison of Table-Driven and On-Demand Routing Protocols</td>
</tr>
<tr>
<td>2.3</td>
<td>Hierarchical Routing protocols</td>
</tr>
<tr>
<td>2.4</td>
<td>Geographic Position Assisted Routing</td>
</tr>
<tr>
<td>2.4.1</td>
<td>Location-Aided Routing (LAR) protocols</td>
</tr>
<tr>
<td>2.5</td>
<td>Mesh Routing Protocol</td>
</tr>
<tr>
<td>2.5.1</td>
<td>MRP On-Demand</td>
</tr>
<tr>
<td>2.5.2</td>
<td>Beacon Mode of MRP</td>
</tr>
<tr>
<td>2.5.3</td>
<td>Hybrid MRP</td>
</tr>
<tr>
<td>2.6</td>
<td>Routing Protocols Employed in the Research</td>
</tr>
<tr>
<td>2.6.1</td>
<td>Destination Sequenced Distance Vector (DSDV)</td>
</tr>
<tr>
<td>2.6.1.1</td>
<td>Packet Routing and Routing Table Management</td>
</tr>
<tr>
<td>2.6.1.2</td>
<td>Performance comparison of DSDV with other Protocols</td>
</tr>
<tr>
<td>2.6.1.3</td>
<td>Advantages of DSDV Protocol</td>
</tr>
<tr>
<td>2.6.1.4</td>
<td>Disadvantages of DSDV Protocol</td>
</tr>
<tr>
<td>2.6.1.5</td>
<td>Problems of existing DSDV Protocol</td>
</tr>
<tr>
<td>2.6.2</td>
<td>Optimised Link State routing Protocol (OLSR)</td>
</tr>
<tr>
<td>2.6.2.1</td>
<td>Advantages of OLSR</td>
</tr>
<tr>
<td>2.6.2.2</td>
<td>Disadvantages of OLSR</td>
</tr>
<tr>
<td>2.6.3</td>
<td>Open Shortest Path First (OSPF)</td>
</tr>
<tr>
<td>2.6.3.1</td>
<td>OSPF benefits</td>
</tr>
<tr>
<td>2.6.3.2</td>
<td>Limitations of OSPF</td>
</tr>
<tr>
<td>2.6.3.3</td>
<td>The Role of Adjacencies in OSPF MANET</td>
</tr>
<tr>
<td>2.6.3.4</td>
<td>OSPF versus Multiprotocol Label Switching (MPLS) routing protocols</td>
</tr>
<tr>
<td>2.6.3.5</td>
<td>Limitations of OSPF in MANET environments</td>
</tr>
<tr>
<td>2.6.3.6</td>
<td>The Multi-Point Relaying (MPR) Technique</td>
</tr>
</tbody>
</table>
2.6.3.7 Database Exchange and Reliable Synchronization in OSPF

2.6.3.8 Reliable Transmission

2.6.3.9 Versions of OSPF

2.6.4 Tabu Search

2.7 Existing Work based on DSDV protocol

2.7.1 Multipath Destination Sequenced Distance Vector (MDSDV)

2.7.2 Secure Efficient Ad hoc Distance Vector Routing Protocol (SEAD)

2.7.2.1 SEAD Security Properties

2.7.3 Secure Destination-Sequenced Distance-Vector Routing Protocol (SDSDV)

2.8 Existing Work based on OLSR protocol

2.8.1 QoS Routing Extension to OLSR (QOLSR)

2.8.2 The Clustered OLSR Protocol

2.8.3 Fast-OLSR Protocol

2.8.3.1 Selection of multipoint relays

2.9 Existing Work on OSPF

2.10 Existing work on Tabu Search Technique

2.11 Summary

3 RESEARCH METHODOLOGY

3.1 Introduction

3.2 DSDV Operation

3.3 OLSR Operation

3.3.1 OLSR Control Traffic

3.3.2 Multipoint Relays

3.3.3 Multipoint Relay Selection
3.3.4 Topology Dissemination 60
3.3.5 OLSR Gateways 61
3.3.6 Multiple Interface Declaration 62
3.4 OSPF operation 62
 3.4.1 Neighbour Discovery 63
 3.4.2 Database Synchronization 64
 3.4.3 Route Calculations 65
3.5 OSPF-OLSR Hybrid Operation 65
3.6 Enhanced OSPF 66
 3.6.1 Proposed cost function 67
 3.6.2 Formulation of Cost Function 68
 3.6.3 Parallelized Tabu Search 71
 3.6.3.1 PTS-Ring 73
3.7 Simulation Tool (NS2) 75
 3.7.1 Implementation in NS2 75
 3.7.2 Network Components in a Mobile Node 77
 3.7.3 Simulation Model and Parameters 79
3.8 Performance Metrics 83
3.9 Summary 86

4 RESULTS AND DISCUSSION 101
4.1 Results 88
 4.1.1 Comparison of DSDV, OLSR and OSPF 88
 4.1.2 Hybrid Scenario - Combined Implementation of OSPF-OLSR 92
 4.1.3 Enhancement Scenario - Implementation of OSPF and EOSPF 95
4.3 Chapter Summary 100

5 CONCLUSION 102
REFERENCES 104
APPENDICES 112
BIODATA OF STUDENT 118
PUBLICATIONS 119