UNIVERSITI PUTRA MALAYSIA

FUZZY LOGIC-BASED HILL CLIMBING TECHNIQUE FOR PHOTOVOLTAIC MAXIMUM POWER POINT TRACKING CONVERTER

MOHAMMAD HOSSEIN TAGHVAEE

FK 2013 52
FUZZY LOGIC-BASED HILL CLIMBING TECHNIQUE FOR PHOTOVOLTAIC MAXIMUM POWER POINT TRACKING CONVERTER

By

MOHAMMAD HOSSEIN TAGHVAEE

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirement for the Degree of Master of Science

May 2013
COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
FUZZY LOGIC-BASED HILL CLIMBING TECHNIQUE FOR PHOTOVOLTAIC MAXIMUM POWER POINT TRACKING CONVERTER

By

MOHAMMAD HOSSEIN TAGHVAEE

May 2013

Chairman: Mohd Amran Mohd Radzi, PhD

Faculty: Engineering

Photovoltaic (PV) is a fast growing segment among renewable energy systems, whose development is owed to depleting fossil fuel and climate-changing environmental pollution. Its weaknesses, however, are its variable generation and non-linear characteristic due to its intermittent nature. These disadvantages contribute to issues of high per-kW installation cost and further low efficiency in PV generators.

An important consideration for achieving high efficiency in PV operation is to match the PV source and load impedance properly for any weather condition. The maximum extractable power from PV panels depends not only to the strength of the solar irradiation but also to the operating point of the energy conversion system. Maximum power point tracking (MPPT) is of paramount importance to the system as it not only maximizes system efficiency but also minimizes the return of investment in the PV installation. The hill climbing algorithm is the most common
method of MPPT due to its simplicity, ease of implementation, and good performance. However, it has issue of perturbation step size and trade off between faster response and steady-state oscillations.

Therefore, in this research work, the hill climbing search method has been modified based on fuzzy logic control for improvement of MPPT operation. This proposed MPPT algorithm is named as fuzzy logic based hill climbing. The proposed MPPT was implemented by fuzzifying the rules of hill climbing search method to reduce its drawbacks, and with this technique, not only the real maximum power point can be readily tracked, but also fast dynamic response and small steady state error can be achieved.

In this study, the characteristics of a PV module (Kyocera KD210GH) were mathematically modeled and simulated using MATLAB simulation tool. Then, the proposed MPPT algorithm and dc-dc boost converter were designed and developed in the same tool. Simulation results are presented to validate performance of the algorithm under different irradiation schemes, and to compare with the results obtained from conventional algorithm. Further experimental setup was carried out for comparative evaluation and the MPPT algorithm was implemented to performance verification of the algorithm by using digital signal processor (TMS320F28335).

The results obtained clearly confirm the proposed MPPT exhibits at least two times faster converging speed than the conventional MPPT in optimum configuration, and
the oscillations around maximum power point under steady state condition show improvement up to 75%.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

TEKNIK LOGIK KABUR BERASASKAN MENDAKI BUKIT BAGI PENUKAR PENGESANAN TITIK KUASA MAKSIMUM FOTOVOLTA

Oleh

MOHAMMAD Hossein TaghvaeE

Mei 2013

Pengerusi: Mohd Amran Mohd Radzi, PhD

Fakulti: Kejuruteraan

Fotovolta merupakan satu segmen yang berkembang pesat di kalangan sistem tenaga boleh diperbaharui, yang mana pembangunannya terjadi akibat semakin berkurangan bahan api fosil dan perubahan iklim kesan pencemaran alam sekitar. Kelemahannya, bagaimanapun, penjanaannya yang berubah-ubah dan ciri-ciri tidak linear yang disebabkan sifatnya yang tidak konsisten. Kelemahan ini menyumbang kepada isu-isu seperti kos pemasangan setiap kW yang tinggi dan seterusnya kecekapan yang rendah dalam penjana fotovolta.

Satu pertimbangan yang penting bagi mencapai kecekapan yang tinggi dalam operasi fotovolta adalah untuk memadankan sumber fotovolta dan galangan beban yang betul dalam sebarang keadaan cuaca. Kuasa maksimum yang diekstrak daripada panel fotovolta bergantung bukan sahaja kepada kekuatan sinaran suria tetapi juga kepada titik operasi sistem penukaran tenaga. Pengesanan titik kuasa maksimum adalah amat penting untuk sistem kerana ia bukan sahaja memaksimumkan kecekapan sistem tetapi juga meminimumkan pulangan pelaburan dalam pemasangan fotovolta. Algoritma mendaki bukit adalah kaedah paling biasa
pengesanan titik kuasa maksimum kerana sifatnya yang ringkas, mudah dilaksanakan, dan prestasi yang baik. Walau bagaimanapun, ia mempunyai isu berkaitan saiz langkah pengusikan dan pengimbangan antara tindak balas yang lebih cepat dan ayunan keadaan mantap.

Oleh yang demikian, dalam kerja penyelidikan ini, kaedah carian mendaki bukit telah diubahsuai berdasarkan kawalan logik kabur untuk memperbaiki operasi pengesanan titik kuasa maksimum. Algoritma pengesanan titik kuasa maksimum yang dicadangkan dinamakan sebagai logik kabur berasaskan mendaki bukit. Pengesanan titik kuasa maksimum yang dicadangkan telah dilaksanakan dengan mengaburkan aturan kaedah carian mendaki bukit untuk mengurangkan kelemahannya, dan dengan teknik ini, bukan sahaja kuasa maksimum sebenar titik sedia dikesan, tetapi juga tindak balas dinamik yang pantas dan ralat kecil keadaan mantap boleh dicapai.

Dalam kaedah kerja ini, ciri-ciri modul fotovolta (Kyocera KD210GH) secara matematik dimodelkan dan disimulasi menggunakan perkakasan perisian MATLAB. Kemudian, algoritma pengesanan titik kuasa maksimum dan penukar dc-dc penggalak telah direka dan dibangunkan dalam perkakasan yang sama. Keputusan simulasi dibentangkan untuk mengesahkan prestasi algoritma dalam skim penyinaran berbeza, and membandingkannya dengan keputusan yang diperolehi daripada algoritma konvensional. Persediaan eksperimen berikutnya dilakukan bagi penilaian secara bandingan dan algoritma pengesanan titik kuasa maksimum dilaksanakan untuk mengesahkan prestasi algoritma dengan menggunakan pemproses isyarat digital (TMS320F28335).
Keputusan yang diperolehi secara jelas menunjukkan pengesanan titik kuasa maksimum yang dicadangkan mempermikan kelajuan menumpu yang lebih cepat daripada pengesanan titik kuasa maksimum konvensional dalam konfigurasi optimum, dan ayunan di sekitar titik kuasa maksimum di bawah keadaan mantap menunjukkan peningkatan kepada 75%.
ACKNOWLEDGEMENTS

First of all, praise is to “Allah” the cherisher, and the sustainers of the world for giving me strengths, health and determination to complete this thesis. I wish to express my deep and sincere appreciation to my supervisor, Dr. Mohd Amran Mohd Radzi, for his valuable ideas and endless support during the course of my thesis and also for the direction and guidance provided during the entire period of my studies. My gratitude goes to the members of supervisory committee, Assoc. Prof. Dr. Mohammad Hamiruce Marhaban and Assoc. Prof. Dr. Hashim Hizam for their kind guidance.

Finally, I wish to thank the one dearest to me, my wife, who continues to astonish me with her patience, resilience and love.
I certify that an Examination Committee has met on May 14th, 2013 to conduct the final examination of Mohammad Hossein Taghvaee on his thesis entitled “FUZZY LOGIC BASED HILL CLIMBING TECHNIQUE FOR PHOTOVOLTAIC MAXIMUM POWER POINT TRACKING (MPPT) CONVERTER” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the student be awarded the (Master of Science).

Members of the Examination Committee were as follows:

Nasri Sulaiman, PhD
Senior Lecturer
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Samsul Bahari Mohd Noor, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Internal Examiner)

Ir. Raja Mohd Kamil Raja Ahmad, PhD
Senior Lecturer
Faculty of Engineering
Universiti Putra Malaysia
(Internal Examiner)

Nowshad Amin, PhD
Professor
Faculty of Engineering and Built Environment
Universiti Kebangsaan Malaysia
(External Examiner)

SEW HENG FONG, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirements for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Mohd Amran Mohd Radzi, PhD
Senior Lecturer
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Mohammad Hamiruce Marhaban, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Member)

Hashim Hizam, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institution.

MOHAMMAD HOSSEIN TAGHVAEE

Date: 14 May 2013
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>ABSTRAK</td>
<td>ii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>APPROVAL</td>
<td>viii</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>LIST OF TABLES</td>
<td>ix</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>LIST OF ABBREVIATIONS</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td>CHAPTER 1: INTRODUCTION</td>
<td>xv</td>
</tr>
<tr>
<td>1</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1</td>
<td>Background</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Problem Statement</td>
<td>3</td>
</tr>
<tr>
<td>1.3</td>
<td>Aim and Objectives</td>
<td>5</td>
</tr>
<tr>
<td>1.4</td>
<td>Research Scope and Limitations</td>
<td>5</td>
</tr>
<tr>
<td>1.5</td>
<td>Thesis Organization</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>LITERATURE REVIEW</td>
<td>9</td>
</tr>
<tr>
<td>2.1</td>
<td>Introduction</td>
<td>9</td>
</tr>
<tr>
<td>2.2</td>
<td>Fundamental of Photovoltaic Energy Generation</td>
<td>10</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Introduction</td>
<td>10</td>
</tr>
<tr>
<td>2.2.2</td>
<td>Photovoltaic Cell</td>
<td>11</td>
</tr>
<tr>
<td>2.2.3</td>
<td>The Ideal Model</td>
<td>12</td>
</tr>
<tr>
<td>2.2.4</td>
<td>The Non-Ideal Model</td>
<td>19</td>
</tr>
<tr>
<td>2.2.5</td>
<td>Expansion of Cells to Modules and Arrays</td>
<td>21</td>
</tr>
<tr>
<td>2.3</td>
<td>Maximum Power Point Tracking</td>
<td>23</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Current-Voltage Curve and Maximum Power Point</td>
<td>23</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Concept of Maximum Power Point Tracking</td>
<td>24</td>
</tr>
<tr>
<td>2.3.3</td>
<td>Maximum Power Point Tracking Algorithms</td>
<td>27</td>
</tr>
<tr>
<td>2.4</td>
<td>DC-DC Converters</td>
<td>43</td>
</tr>
<tr>
<td>2.4.1</td>
<td>Effect of Duty Cycle on Input Impedance of DC-DC Converters</td>
<td>45</td>
</tr>
<tr>
<td>2.5</td>
<td>Summary</td>
<td>47</td>
</tr>
<tr>
<td>3</td>
<td>METHODOLOGY</td>
<td>48</td>
</tr>
<tr>
<td>3.1</td>
<td>Introduction</td>
<td>48</td>
</tr>
<tr>
<td>3.2</td>
<td>Modeling of PV Module</td>
<td>49</td>
</tr>
<tr>
<td>3.3</td>
<td>Development of MPPT Algorithm</td>
<td>55</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Conventional Hill Climbing Algorithm</td>
<td>56</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Fuzzy Logic Based Hill Climbing Algorithm</td>
<td>57</td>
</tr>
<tr>
<td>3.4</td>
<td>Development and Operation Analysis of Boost Converter</td>
<td>65</td>
</tr>
<tr>
<td>3.5</td>
<td>Control of MPPT</td>
<td>70</td>
</tr>
<tr>
<td>3.6</td>
<td>Summary</td>
<td>71</td>
</tr>
<tr>
<td>4</td>
<td>SIMULATION AND EXPERIMENTAL RESULTS</td>
<td>73</td>
</tr>
<tr>
<td>4.1</td>
<td>Introduction</td>
<td>73</td>
</tr>
</tbody>
</table>

xii
4.2 MATLAB/Simulink Model 73
4.3 Comparison of the Proposed Algorithm with Hill Climbing Algorithm 77
4.4 Dynamic Performance 82
4.5 Experimental Setup 88
 4.5.1 Overall Hardware Schematic 88
4.6 Experimental Results 94
4.7 Conclusion 99

5 CONCLUSION AND FUTURE WORKS 100
5.1 Conclusion 100
5.2 Future Works 102

REFERENCES 104
LIST OF PUBLICATIONS 112