UNIVERSITI PUTRA MALAYSIA

SYNTHESIS AND FABRICATION OF NANOCOMPOSITE MAGNESIA DOPED BARIUM STRONTIUM TITANATE FOR THICK FILM HUMIDITY SENSOR

HAMID BARZABADI FARAHANI

FK 2013 47
SYNTHESIS AND FABRICATION OF NANOCOMPOSITE MAGNESIA DOPED BARIUM STRONTIUM TITANATE FOR THICK FILM HUMIDITY SENSOR

By

HAMID BARZABADI FARAHANI

Thesis Submitted to the School of Graduate Studies, University Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science

November 2013
COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
Dedicated to my parents Fahimeh and Amir
SYNTHESIS AND FABRICATION OF NANOCOMPOSITE MAGNESIA DOPED BARIUM STRONTIUM TITANATE FOR THICK FILM HUMIDITY SENSOR

By

HAMID BARZABADI FARAHANI

November 2013

Chair: Mr. Rahman Wagiran, MSc
Faculty: Engineering

Water vapour is a highly interactive matter around the earth glob. Accordingly, monitoring and control of the surrounded humidity is extremely demanded in different areas, i.e., domestic and industrial applications. By virtue of the indispensable demands in such fields, moisture sensing technology has rapidly progressed to overcome the drawbacks. Thick film technology has been discerned as a convenient technology from the last decades which exhibits high integration, design flexibility, affordable cost and material intermingled design. A provskite family of compound ceramics with the chemical formula of ABX₃, are natural minerals in nature.

The scope of this dissertation research is to fabricate and configure of miniaturized double layer thick film humidity sensors which is realized based on the nanocomposite sensing elements. The humidity sensitive properties of nano aggregates were examined in view point of their potential applications for humidity
sensors. \(\text{BaTiO}_3 \) and \(\text{SrTiO}_3 \) provskites were proposed as precursors. To examine the microstructure and improve the moisture-sensitive behaviour of the \((\text{Ba}_{0.5}\text{Sr}_{0.5})\text{TiO}_3\) compound, the MgO admixtures were added with 1, 3 and 5 mol\% concentration. Nano-powders were mixed based on molar ratio and prepared via conventional solid state reaction. The thick film inks were prepared by mixing appropriate ratio of an organic vehicle and heat treated nanocomposites, and screen printed onto an alumina substrate utilizing DEK-J1202RS automatic machine. The surface morphology and electrical properties of the nano grains and developed thick film specimens were studied. The performance characteristics of the proposed prototype ceramic and sensors (BST, BSTM1, BSTM3, and BSTM5) were evaluated and analyzed by means of Impedance Analyzer and LCR meter with respond to 20\%-95\% RH through laboratory humidity simulation chamber, and frequency variations in range of 20Hz to 2MHz. The validation of the sensors analytical model is illustrated and processed using experimental outcomes.

The novel contributions of this research are contained of two major parts. First, the characterizations have shown that all the four different compounds met the criteria to be used as humidity sensing elements. Addition of admixtures has led to particle size diminution (~ 2nm per concentration). Second, the results from the DC and AC analysis have shown that all the sensors are operating based on the ionic-conduction mechanism, and applicable for being dual functional. The structural outcomes of the films have revealed that the grains had matured by dopant additions (~ 5nm per doping value), and highly contributed in transduction process. Overall, the BSTM3 has shown to be the most promising compound to be used as a thick film humidity sensor.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

SINTESIS DAN FABRIKASI PENDERIA KELEMBAPAN SAPUT TEBAL NANO-KOMPOSIT BARIUM STRONTIUM TITANAT TERDOP MAGNESIA

Oleh

HAMID BARZABADI FARAHANI

November 2013

Pengerusi: Mr. Rahman Wagiran, MSc
Fakulti: Kejuruteraan

Skop kajian yang dibentangkan di sini adalah untuk membuat dan mencari rupa bentuk penderia kelembapan dua lapisan saput tebal miniatur yang dihasilkan berasaskan bahan penderiaan nano-komposit. Ciri-ciri bahan nano-agregat yang sensitif kepada kelembapan dikaji dari segi keupayaannya diguna sebagai penderia
mengkaji sifat mikro-struktur bahan dan meningkatkan sensitif kelembapan bahan
kompun (Ba$_{0.5}$Sr$_{0.5}$)TiO$_3$ bahan tambah MgO dicampurkan pada kadar kepekatan 1,
3 dan 5mol%. Campuran tepung nano dibuat berdasarkan nisbah molar dan
disediakan menggunakan tindak balas keadaan pepejal yang biasa. Dakwat saput
tebal disediakan dengan cara mencampurkan bahan pembawa organic dan bahan
nano-composit yang diterapi haba pada kadar yang tertentu, dan kemudian dicetak di
atas substrat alumina menggunakan mesin otomatik DEK-J1202RS. Morfologi
permukaan dan sifat dielektrik nano-bijian dan specimen saput tebal yang dibina
telah dikaji selidik. Performans ciri-ciri seramik yang dicadangkan dan prototip
penderia (BST, BSTM1, BSTM3 and BSTM5) dinilai dan dianalisis menggunakan
Penganalisis Impedens dan meter LCR untuk nilai 20%-95% RH dalam kebuk
kelembapan makmal, dan pada julat frekuensi antara 20Hz ke 2MHz. Validasi dan
pemodelan penderia analitik ditunjukkan dan diproses dari dapatan secara ujikaji.

Sumbangan penting dalam kerja penyelidikan ini terkandung dalam dua bahagian.
Pertamanya, pencirian yang dibuat menunjukkan kesemua empat sebatian yang
dikaji memenuhi kriteria sebagai unsure penderia kelembapan. Penambahan bahan
campuran boleh mengecilkan saiz zarah (~2nm per kepekatan). Keduanya, hasil dari
analisis DC dan AC menunjukkan yang semua penderia beroperasi berdasarkan
mekanisma konduksi-terion, dan boleh digunakan dalam dua fungsi. Struktur saput
yang dihasilkan menunjukkan butir menjadi lebih matang dengan penambahan
bendasing (~ 5nm per nilai pengedopan bendasing), dan ini meningkatkan proses
transkondusi. Secara keseluruhan, BSTM3 telah menunjukkan sebagai sebatian yang
paling sesuai diguna sebagai penderia kelembapan saput tebal.
ACKNOWLEDGEMENTS

I am thankful to Mr. Rahman Wagiran, my supervisor and patron, for giving me guidance and counsel, and for having hope and confidence in me. His patience in reading draft after draft of every chapter, proposal and idea I wrote up continues to amaze me. I thank him for always being willing to meet me whenever I barged into his office. I appreciate Mr. Rahman's fine for providing me with an excellent office in adjacent of our lab to pursue my research.

I am grateful to my committee members Assoc. Prof. Dr. Mohd Nizar Hamidon and Dr. Noor Ain Kamsani for their comments and suggestions. I have benefitted greatly from Dr. Nizar advices and support for the research materials and ITMA equipments.

I have to appreciate the guidance given by Prof. Dr. Zainal Abidin Talib, Dean of science faculty, and Assoc. Prof. Dr. Mansor Hashim from dielectric material groups. I would like to thank Assoc. Prof. Dr. Jumiah Hassan, who has given me an opportunity to use Impedance Analyzer in her lab. A special thanks goes to Assoc. Prof. Dr. Norhisam Misron who gave the permission to use LCR meter from his lab. A special gratitude I give to Dr. Khamirul Amin Matori, Head of MSCL laboratory who provided and supports to use required equipments and necessary materials.

I wish to express my sincere gratitude to Dr. Samikannu Kanagesan, Post Doctoral of the MSCL lab for investing time and energy discussing ideas with me and tolerating my many opinionated digressions. An appreciate to Prof. Dr. Luqman Chuah from Department of Chemical and Environmental Engineering for his guidance.

Furthermore, I would also like to acknowledge with much appreciation the crucial role of the staff and colleagues of Institute of Advanced Technology for making it possible for me to do my research. I thank Aizat Noor Ismail, Mutia Suhaibah, Gholamreza Vahedi and Alex See for lending a sympathetic ear and putting my toils in perspective. Ghazaleh Bahmanrokh, Misbah Zulkimi and Shamsul Shafie deserve credit for material sections of my work.

I would like to express my deepest appreciation to all those who provided me the possibility to complete this dissertation. Special thanks to Kaveh Mazloomi for software development part, and my friends Mohammad Ali Jan Ghasab and Reza Shoorangiz for their warm supports. I thank my officemates Nima Khoshisirat and Rasoul Garmabadi, whose contribution in stimulating suggestions. It has been a pleasure working with power Phd and MSc researchers, in particular, Mohammad Mehrjou and Arash Toudeshki. A thanks I give to our final year project student Syafiqah Abd Razak, who assembled and programmed the test chamber parts.
I thank the University Putra Malaysia for making it possible for me to do this master research. Thanks to all the Electrical Department technicians for technical assistance.

This dissertation would not have been possible without Sara Khodadad. Her support and encouragement has seen me through tumultuous times. I thank her for simultaneously brandishing a sword to quell the demons of my insecurities, a spoon to bake delectable desserts and a wand to bring joy to my life in so different ways.

Last but absolutely not least, I thank my parents, Fahimeh and Amir Farahani, and brother, Saeed Farahani, for their unflagging belief that despite their incomprehension about what I do, I must be saving the world. I am indebted to my parents for inculcating in me the dedication and discipline to do whatever I undertake well.
I certify that a Thesis Examination Committee has met on 28/11/2013 to conduct the final examination of Hamid Barzabadi Farahani on his Master of Science thesis entitled "Synthesis and Fabrication of Nanocomposite Magnesia Doped Barium Strontium Titanate for Thick Film Humidity Sensor" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master of Science degree.

Members of the Thesis Examination Committee were as follows:

Nasri Sulaiman, PhD
Senior Lecturer
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Wan Zuha Wan Hasan, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Internal Examiner)

Suhaidi Shafie, PhD
Senior Lecturer
Faculty of Engineering
Universiti Putra Malaysia
(Internal Examiner)

Ibrahim Ahmad, PhD
Professor
Faculty of Engineering
Universiti Tenaga Nasional
(External Examiner)

NORITAH OMAR, PhD
Associate Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Rahman Wagiran, MSc
Senior Lecturer
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Mohd Nizar Hamidon, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Member)

Noor Ain Kamsani, PhD
Senior Lecturer
Faculty of Engineering
Universiti Putra Malaysia
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

Declaration by graduate student

I hereby confirm that:
• this thesis is my original work;
• quotations, illustrations and citations have been duly referenced;
• this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
• intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
• written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
• there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: ____________________________ Date: _____________________

Name and Matric No.: ___
Declaration by Members of Supervisory Committee

This is to confirm that:
• the research conducted and the writing of this thesis was under our supervision;
• supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature: __________________ Signature: __________________
Name of Chairman of Supervisory Committee: __________________
Name of Member of Supervisory Committee: __________________

Signature: __________________ Signature: __________________
Name of Member of Supervisory Committee: __________________
Name of Member of Supervisory Committee: __________________

xii
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>PAGE</th>
<th>CONTENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ii</td>
<td>DEDICATION</td>
</tr>
<tr>
<td>iii</td>
<td>ABSTRACT</td>
</tr>
<tr>
<td>v</td>
<td>ABSTRAK</td>
</tr>
<tr>
<td>vii</td>
<td>ACKNOWLEDGEMENTS</td>
</tr>
<tr>
<td>ix</td>
<td>APPROVAL</td>
</tr>
<tr>
<td>xi</td>
<td>DECLARATION</td>
</tr>
<tr>
<td>xvi</td>
<td>LIST OF TABLES</td>
</tr>
<tr>
<td>xvii</td>
<td>LIST OF FIGURES</td>
</tr>
<tr>
<td>xx</td>
<td>LIST OF ABBREVIATIONS</td>
</tr>
</tbody>
</table>

CHAPTER

<table>
<thead>
<tr>
<th>PAGE</th>
<th>CONTENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>INTRODUCTION</td>
</tr>
<tr>
<td></td>
<td>1.1 Introduction</td>
</tr>
<tr>
<td></td>
<td>1.1.1 Motivation</td>
</tr>
<tr>
<td></td>
<td>1.2 Problem Statement</td>
</tr>
<tr>
<td></td>
<td>1.3 Aim and Research Objectives</td>
</tr>
<tr>
<td></td>
<td>1.3.1 Contribution of Knowledge</td>
</tr>
<tr>
<td></td>
<td>1.3.2 Research Plan</td>
</tr>
<tr>
<td></td>
<td>1.4 Research Scope and Limitation</td>
</tr>
<tr>
<td></td>
<td>1.5 Thesis Organization</td>
</tr>
<tr>
<td>11</td>
<td>LITERATURE REVIEW</td>
</tr>
<tr>
<td></td>
<td>2.1 Introduction</td>
</tr>
<tr>
<td></td>
<td>2.2 Humidity Basics and Measurement Parameters</td>
</tr>
<tr>
<td></td>
<td>2.3 Humidity Sensors Classification and Applications</td>
</tr>
<tr>
<td></td>
<td>2.4 Working Principle of Protonic-Conduction Type Ceramic Humidity Sensors</td>
</tr>
<tr>
<td></td>
<td>2.4.1 Water-Adsorption and Conduction Mechanism on Ceramic Oxides Solid Surfaces</td>
</tr>
<tr>
<td></td>
<td>2.5 Impedance Type Humidity Sensors (Resistive)</td>
</tr>
<tr>
<td></td>
<td>2.5.1 Polymer-Based Resistive Humidity Sensors</td>
</tr>
<tr>
<td></td>
<td>2.5.2 Ceramic-Based Resistive Humidity Sensors</td>
</tr>
<tr>
<td></td>
<td>2.5.2.1 Provskite Type Ceramic Humidity Sensors</td>
</tr>
<tr>
<td></td>
<td>2.5.2.2 Thick Film Ceramic Humidity Sensors</td>
</tr>
<tr>
<td></td>
<td>2.5.2.3 Catalyst-Added Ceramic Humidity Sensors</td>
</tr>
<tr>
<td></td>
<td>2.5.2.4 Doped and Undoped Semiconducting Thin Film Humidity Sensors</td>
</tr>
<tr>
<td></td>
<td>2.5.2.5 Doping Influence on Provskite's Humidity Sensing Properties</td>
</tr>
<tr>
<td>23</td>
<td>2.6 Capacitive Type Humidity Sensors</td>
</tr>
<tr>
<td></td>
<td>2.6.1 Polymer-Based Capacitive Humidity Sensors</td>
</tr>
<tr>
<td></td>
<td>2.6.2 Ceramic-Type Capacitive Humidity Sensors</td>
</tr>
<tr>
<td>48</td>
<td>2.7 Synopsis</td>
</tr>
</tbody>
</table>
3 METHODOLOGY

3.1 Introduction

3.2 Nanopowder Synthesis and Preparation of BST Ceramics

3.2.1 Prereacted Materials
3.2.2 BST Sample Fabrication
3.2.3 Weighing and Mixing
3.2.4 Grinding and Milling
3.2.5 Drying and Fine Milling
3.2.6 Calcination
3.2.7 Pressing and Compaction
3.2.8 Sintering
3.2.9 Coating and Electrode Fabrication

3.3 Characterization Flow of Synthesized Nanopowder and Ceramics

3.3.1 Barium Strontium Titanate Annealed Ceramics Characterization Route

3.3.1.1 Density Measurement
3.3.1.2 Surface Morphology and Microstructure Studies
3.3.1.3 Elemental Analysis and Chemical Characterization
3.3.1.4 Porosity Evaluation

3.3.2 Characterization Process of Synthesized Doped and BST Powders

3.3.2.1 X-Ray Diffraction (XRD)
3.3.2.2 Particle Size Consideration
3.3.2.3 Surface Area and Porosity Studies

3.4 Impedance Spectroscopy and Electrical Characterization of Materials

3.4.1 Dielectric Studies
3.4.2 Complex Impedance Spectroscopy

3.5 Electrical-Humidity Sensing Characteristic of the Ceramics

3.5.1 DC Electrical Resistance Humidity

3.6 Thick Film Humidity Sensors Design and Fabrication

3.6.1 Sensors Structure and Fabrication Process

3.6.1.1 Thick Film Humidity Sensor Structure Design
3.6.1.2 Sensor Fabrication Flow

3.6.1.2.1 Sensitive Ink Preparation
3.6.1.2.2 Thick Film Electrode Fabrication
3.6.1.2.3 Sensing Layer Fabrication
3.6.1.3 Bonding and Contact Fixity

3.7 Sensors Physical and Structural Properties Studies

3.8 Measurement Set Ups and Thick Film Humidity Sensors Electrical Characterization

3.8.1 DC Resistance Humidity Characterizations
3.8.2 Impedance Spectra-Humidity Characteristics

4 RESULTS AND DISCUSSION
4.1 Introduction 90
4.2 Characterization Process of BST and Doped Powders 90
4.2.1 X-Ray Diffraction Analysis 90
4.2.2 Energy Filter Transmission Electron Microscopy 94
4.2.3 Gas Sorption, Surface Area and Porosity Studies 96
4.3 Electroceramics Physical and Structural Characteristic Studies 100
4.3.1 Sintering Flow, Density and Porosity Evaluations 100
4.3.2 Surface Morphological Analysis 102
4.3.3 Energy Dispersive X-ray Spectroscopy and Elemental Characterization 107
4.4 Humidity Sensing Studies of Electroceramics 109
4.4.1 Capacitance-Humidity Frequency Studies 111
4.4.2 Humidity-Conductance and Frequency Dependence of the Bulk Conductivity 112
4.4.3 Impedance-Humidity Characteristics 113
4.4.3.1 Impedance-Frequency Spectra Studies 114
4.4.4 Specific Electrical Resistance-Humidity Characteristics 117
4.5 Thick Film Structural, Physical and Electrical Properties Validation 118
4.5.1 Microstructures Investigation of BST and MgO Doped BST Thick Films 118
4.5.2 Electrophysical Characterization and Humidity Sensing Disposition of Thick Films 121
4.5.2.1 Thick Films Capacitance and Resistance versus Humidity 121
4.5.2.2 Humidity-Conductance Measurement of Sensors 125
4.5.2.3 Discrimination of BST and Catalyst Added Sensors in Various Relative Humidities 126
4.5.2.4 Capacitance-Frequency Contrast of the Thick Films at Varied Relative Humidity 130
4.5.2.5 DC Electrical Resistance-Humidity Characterization 131
4.5.2.6 Bulk Electrical Conductivity-Humidity Studies 132
4.5.3 Humidity-Sensitivity Measurement of Thick Film Elements 134
4.6 Discriminating and Choosing the Moisture Sensitive Materials for Development 136

5 CONCLUSION AND RECOMMENDATIONS 138
5.1 Conclusion 138
5.2 Recommendations for Future Research 141

REFERENCES 143
APPENDIX 158
BIODATA OF STUDENT 159