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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of 

the requirements for the degree of Doctor of Philosophy. 

 

SIMULATION OF SINGLE AND DUAL LAYERED RAPID PRESSURE 

SWING ADSORPTION  

 

By 

 

LAI YIN LING 
 

May 2013 
 

Supervisor : Professor Ir Thomas Choong Shean Yaw, PhD  

 

Faculty : Engineering 

 

 

Rapid Pressure Swing Adsorption (RPSA) is a cyclic process where the bed is 

repeatedly being subjected to rapid adsorption and desorption. The process is 

inherently dynamic and exhibits cyclic steady state (CSS) after sufficient number of 

cycles. In this thesis, two novel methods of successive substitution (MSS) accelerators 

are developed. The novel MSS accelerators possess three important features (i) 

speeding the convergence to CSS, (ii) determining the CSS unambiguously, and (iii) 

preserving the process variable profiles at CSS. The MSS accelerators incorporate a 

hybrid algorithm which combines the MSS and (i) Aitken and (ii) Muller updating 

scheme, and a stopping criterion. Both hybrid algorithms are tested on a cyclic 

process, controlled-cycle stirred tank reactor (CCSTR) described by a non-linear 

algebraic equation. The Muller hybrid algorithm is found to achieve CSS faster and is 

then adopted for the simulation of RPSA for air separation. It is found that the Muller 

hybrid algorithm is able to reduce the number of cycles required to reach CSS by 50%. 

The process variable profiles at CSS obtained from the algorithm are also found to be 

in excellent agreement with the MSS simulation. 

 

http://profile.upm.edu.my/csthomas/en/profile.html
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A dual layered RPSA model is then developed. Verification of the applied numerical 

methods and computer programs are carried out successfully that the simulated results 

agree well with the analytical solutions and experimental data. The optimum 

pressurization to depressurization time ratio for the dual layered RPSA is first 

determined. Effects of particle sizes (300:100 µm to 300:500 µm), types of adsorbents 

(Zeolites 5A and AgLiX), and having non-adsorptive particles in oxygen product 

purity and recovery are then studied. Depending on the ratio of the length of the first 

layer to the length of the bed, , the dual layered RPSA is found to improve the 

oxygen product purity by 16% - 20% for particle size of 300:100 µm. It is also found 

that the oxygen product purity increases by almost 20% when the first layer is packed 

with Zeolite AgLiX and Zeolite 5A in the second layer. Higher pressure drop across 

the bed is induced when particles of smaller pressure drop are used in the first layer 

and particles of larger pressure drop are used in the second layer, hence leading to 

better separation. Nevertheless, the oxygen product recovery is found to be insensitive 

to these new configurations. The dual layered RPSA packed with non-adsorptive 

particles is found to have reduced the oxygen product purity. Hence, replacing the 

adsorbent at the product end will not help in reducing the amount of adsorbent needed 

for the operation. 
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 

memenuhi keperluan untuk ijazah Doktor Falsafah  

 

SIMULASI UNTUK PENJERAPAN BUAIAN TEKANAN PESAT TUNGGAL 

DAN DUA LAPISAN 

 

Oleh 

 

LAI YIN LING 

 

Mei 2013  

 

Penyelia : Professor Ir Thomas Choong Shean Yaw, PhD  

 

Fakulti : Kejuruteraan 

 

 

Penjerapan buaian tekanan pesat (RPSA) adalah satu proses kitaran di mana katil 

penjerapan adalah berkali-kali tertakluk kepada penjerapan dan nyahjerapan yang 

pesat. Proses ini bersifat dinamik dan mempamerkan keadaan stabil kitaran (CSS) 

selepas beberapa kitaran yang mencukupi. Dalam tesis ini, dua novel kaedah 

penggantian berturut-turut (MSS) pemecut dibangunkan. MSS novel pemecut 

memiliki tiga ciri-ciri penting (i) mempercepatkan penumpuan kepada CSS, (ii) 

menentukan CSS jelas, dan (iii) memelihara profil pembolehubah proses di CSS. 

Pemecut MSS menggabungkan algoritma hibrid yang menggabungkan MSS dan (i) 

Aitken dan (ii) Muller skim mengemaskini, dan kriteria berhenti. Kedua-dua algoritma 

hibrid diuji dengan satu proses kitaran bernama kawalan kitaran dikacau tangki reaktor 

(CCSTR) yang digambarkan oleh persamaan bukan linear algebra. Algoritma Muller 

hibrid didapati mencapai CSS lebih cepat dan ia kemudian digunakan dalam simulasi 

RPSA untuk pemisahan udara. Ia mendapati bahawa algoritma Muller hibrid mampu 

untuk mengurangkan bilangan kitaran yang diperlukan untuk mencapai CSS sebanyak 

50%. Profil pembolehubah proses di CSS diperolehi daripada algoritma juga didapati 

berada dalam perjanjian yang baik dengan simulasi MSS. 

http://profile.upm.edu.my/csthomas/en/profile.html
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Satu model RPSA dua lapisan kemudian dibangunkan. Pengesahan kaedah yang 

digunakan berangka dan program komputer dijalankan dengan jayanya bahawa 

keputusan simulasi bersetuju dengan baik dengan penyelesaian analitikal dan data uji 

kaji. Nisbah masa tekanan kepada nyahtekanan optimum untuk berlapis dua RPSA 

mula-mula ditentukan. Kesan saiz zarah (300:100 μm hingga 300:500 μm), jenis 

adsorben (Zeolit 5A dan AgLiX), dan zarah bukan serapan dalam ketulenan produk 

oksigen dan pemulihan kemudiannya dikaji. RPSA dua lapisan didapati dapat 

meningkatkan ketulenan produk oksigen sebanyak 16% - 20% bagi saiz zarah 300:100 

μm. Bergantung pada nisbah panjang lapisan pertama kepada panjang katil, , ia juga 

mendapati bahawa ketulenan produk oksigen meningkat sebanyak hampir 20% apabila 

lapisan pertama dipenuhi dengan zeolit AgLiX dan zeolit 5A dalam lapisan kedua. 

Kejatuhan tekanan yang lebih tinggi di seluruh katil adalah disebabkan apabila zarah 

kejatuhan tekanan yang lebih kecil digunakan dalam lapisan pertama dan zarah 

kejatuhan tekanan yang lebih besar digunakan pada lapisan kedua, justeru membawa 

kepada pemisahan yang lebih baik. Walau bagaimanapun, pemulihan oksigen produk 

didapati tidak sensitif kepada konfigurasi baru ini. RPSA dua lapisan yang diisi 

dengan zarah bukan serapan didapati telah mengurangkan ketulenan produk oksigen. 

Oleh itu, menggantikan adsorben pada lapisan kedua tidak akan membantu dalam 

pengurangan jumlah adsorben yang diperlukan untuk operasi ini. 
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1 

 

CHAPTER 1 

 

 INTRODUCTION  

 

1.1 Background 

Cyclic process is a class of advanced chemical engineering unit operations. A 

process is known as a cyclic process the process state variables are cyclically 

varying with time. Examples of cyclic process are pressure swing adsorption, 

vacuum swing adsorption, temperature swing adsorption, pressure-vacuum swing 

adsorption, reverse flow reactor and simulated moving bed.  Pressure swing 

adsorption (PSA) is now an established gas separation technology, with advantages 

over other separation options for middle-scale processes (Fiandaca et al., 2009).  It 

is a cyclic process, where the beds are repeatedly being subjected to adsorption and 

desorption. PSA processes have found many important applications such as air 

separation, recovery of ammonia from ammonia synthesis, ethanol dehydration, 

carbon dioxide recovery from combustion process, trace volatile organic component 

removal, hydrogen recovery from refinery gases, air drying, separations of olefins 

and paraffins (Skarstrom, 1960; Mikkinnen et al. (1993); Suzuki et al., 1996; Silva 

and Rodrigues, 1998; Choong et al., 20004; Kim et al., 2006; Rao et al., 2010; Chai 

et al., 2011, 2012). 

 

1.2 Cyclic Steady State 

The transient cyclic PSA process can be modelled by using partial differential 

equations (PDEs) for mass conservation in the fluid phase, ordinary differential 

equations (ODEs) for the sorption rate in the stationary phase, and algebraic 
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equations for the adsorption equilibrium between phases. The cyclic adsorption 

process has no steady state like general continuous process as it is inherently 

dynamic. Once the cyclic process is initiated, the process undergoes a transient stage 

prior to reach cyclic steady state (CSS.) At CSS, the process state variables at some 

instant within a cycle have the same value at the corresponding instant within each 

subsequent cycle (Choong, 2000). In the numerical simulation of cyclic process, the 

most commonly used method is the method of successive substitution (MSS). For 

PSA, the simulation starts with initiating the pressurisation step and followed by the 

depressurisation step. Once the cycle is completed, the cycle results will then be 

used as the initial conditions for the next cycle. Many cycles may be required for the 

process to reach CSS (Choong, 2000). This can be computationally demanding.  

 

There are two types of acceleration methods in speeding up the convergence of CSS, 

i.e. (i) direct determination and (ii) accelerated MSS. In the direct determination 

method, the bed condition is solved directly with the inclusion of CSS conditions 

imposed as a constraint (Nilchan and Panthelides, 1998; Ko and Moon, 2002; Ding 

et al., 2002; Jiang et al., 2003; Biegler et al., 2004; Cruz et al., 2005; Fiandaca et al., 

2009; Agarwal et al. 2009). The direct determination methods were reported to be 

efficient.  However, they are mathematically demanding, and sometimes 

convergence can be an issue.  The accelerated MSS is mathematically simpler.  

Kvamsdal and Hertberg (1997) presented the use of two updating schemes, i.e. the 

Aitken and the Muller methods for the convergence study.  However, their study 

suffered from the lack of a rational stopping criterion.  The error tolerance to 

determine the CSS needed to be tuned in order to get the same profile as obtained in 

the MSS. The accelerator developed by Choong et al. (2002), based on the concept 
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of paired-extrapolator, was able to reduce the number of cycles required to reach 

CSS and bracket the CSS. However, the extrapolators suffered from rounding error, 

and the state variable profiles at CSS were not preserved. 

 

1.3 Rapid Pressure Swing Adsorption 

Rapid pressure swing adsorption (RPSA), an intensified PSA process, uses a single 

packed bed that produces continuous flow of product stream instead of multiple 

adsorption beds. The concept of RPSA was originally proposed by Turnock and 

Kadlec (1971) to reduce the complexity of multi-bed PSA. Compared to PSA, RPSA 

operates on shorter cycle time and smaller adsorbent bed. The radial flow RPSA, 

delivered enriched product gas stream in radial direction instead of the usual axial 

direction, was studied by Chiang and Hong (1995), and Huang and Chou (2003).  

Motivated by the scaling rules of Rota and Wankat (1991), Suzuki et al. (1996) and 

Murray (1996) studied the ultra-rapid pressure swing adsorption (URPSA) which 

utilises very short cycle time (in the order of 1s or sub-second) to enhance the 

productivity of RPSA. Recently, Rao (2010) studied a two-step pulsed pressure 

swing adsorption (PPSA) with the objective of designing a portable medical grade 

oxygen concentrator. His model suggested that using rapid cycling (~ 1 s) and small 

adsorbent (< 100 µm), it was possible to obtain very high oxygen productivity per 

unit mass of adsorbent. However, small particle size of less than 100 µm was found 

to induce much higher axial dispersion than that was predicted. The higher axial 

dispersion and high bed resistance due to particle clustering was experienced in his 

experimental work. Low oxygen purity of less than 38.5% was obtained in his 

experiment. The low velocity across the bed caused by high bed resistance also led 

to low oxygen recovery and productivity.  
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1.4 This research 

This research consists of two parts. The objectives of both parts are summarised as 

below: 

Part I: 

1. To devise an accelerated MSS method for cyclic processes that exhibits three 

salient features, i.e. accelerate the convergence to CSS, (ii) determine CSS 

unambiguously, and (iii) preserve the process variable profiles at CSS. 

2. To achieve the above objective, two hybrid algorithms combining the MSS 

with (i) Aitken or (ii) Muller updating scheme, with the rational stopping 

criterion incorporated are developed. The two algorithms are first tested on a 

cyclic reactor model involving non-linear algebraic equations.  The more 

efficient hybrid algorithm will then be adopted for the RPSA model.  

Part II: 

3. To develop a modified configuration for RPSA, namely dual layered RPSA. 

4. To study the effect of different particle size, different type of adsorbents, and 

non-adsorptive particles on oxygen product purity and recovery for the dual 

layered RPSA. 
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