MODELLING, OPTIMISATION, AND ULTRASOUND PRE-OSMOTIC TREATMENT OF GUAVA DRYING

KEK SIOK PENG

FK 2012 84
MODELLING, OPTIMISATION, AND ULTRASOUND PRE-OSMOTIC TREATMENT OF GUAVA DRYING

KEK SIOK PENG

MASTER OF SCIENCE
UNIVERSITI PUTRA MALAYSIA
2012
MODELLING, OPTIMISATION, AND ULTRASOUND PRE-OSMOTIC TREATMENT OF GUAVA DRYING

By

KEK SIOK PENG

Thesis submitted to the School of Graduate Studies, Universiti Putra Malaysia in Fulfilment of the Requirements for the Degree of Master of Science

August 2012
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

MODELLING, OPTIMISATION, AND ULTRASOUND PRE-OSMOTIC TREATMENT OF GUAVA DRYING

By

KEK SIOK PENG

August 2012

Chairperson : Assoc. Prof. Ir. Chin Nyuk Ling, PhD
Faculty : Faculty of Engineering

The drying behaviour and quality attributes of guava slices were investigated through modelling, optimisation, and ultrasound pre-osmotic conventional hot-air drying. Modelling studies of drying kinetics and quality attributes are presented using theoretical and statistical models by varying temperature from 55 to 75 °C and slice thickness from 3 to 9 mm. The quality of dried fruit was measured for its water activity, colour, vitamin C, and texture. The superposition technique with Midilli-Kucuk model showed efficiency in modelling the drying process with $R^2 = 0.9991$. The second-order polynomial equations adequately described the quality of dried guava with regression coefficient, $R^2 > 0.7$. Drying time was a good function of temperature and thickness ($P < 0.001$); water activity, colour, and vitamin C showed strong dependence on temperature ($P < 0.1$); while texture was mainly influenced by its thickness ($P < 0.005$). The optimum drying temperature of 70 °C at slice thickness of 6 mm was determined using the desirability function method. Simultaneous modelling using the theoretical and statistical drying models provides information on water diffusion and evaporation with the drying responses and factors.
With the optimised slice thickness, 6 mm used in subsequent experiments, the effects of ultrasound pre-osmotic treatments on guava slices with indirect sonication using an ultrasonic bath system and direct sonication using an ultrasonic probe system were investigated. Pre-treatments in three osmotic solution concentrations of 0, 35, and 70 °Brix using ultrasonic bath at power from 0 – 2.5 kW for immersion time ranging for 20 – 40 minutes or using the ultrasonic probe at amplitude from 0 – 35% for immersion time of 6 – 20 minutes were investigated. Water loss, solid gain, weight reduction and colour change significantly increased ($P < 0.0005$) with ultrasound power or ultrasound amplitude, immersion time, and osmotic solution concentration. Indirect sonication with ultrasonic bath at 1.75 kW and 60 minutes of immersion time with 70 °Brix osmotic solution contributed to a highest water loss of 34.34%, solid gain of 8.85%, weight reduction of 24.17% and acceptable colour change when compared to the direct sonication with ultrasonic probe.

The effect of optimum ultrasound pre-osmotic treatment at osmotic solution of 0, 35, and 70 °Brix prior to the hot-air drying at optimum drying temperature of 70 °C on the transport properties and quality attributes of dried guava was studied. The application of ultrasound pre-osmotic treatment prior to hot-air drying was able to reduce the drying time by 33.3%, increased the effective diffusivity by 34.5%, reduced the dried fruit colour changes by 37.9%, decreased the vitamin C contents by 32.5%, and resulted to the hardness of 430.1 g – 469.6 g, which was comparable to the fresh guava. The use of ultrasound in fruit drying is recommended to improve the drying process and the dried product quality.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

PERMODELAN, PENGOPTIMASIANT, DAN PRA-RAWATAN OSMOTIK BERULTRABUNYI BAGI PENGERINGAN JAMBU BATU

By

KEK SIOK PENG

Ogos 2012

Pengerusi : Prof. Madya Ir. Chin Nyuk Ling, PhD
Fakulti : Fakulti Kejuruteraan

Sifat tingkah laku pengeringan dan sifat kualiti kepada kepingan jambu batu telah dikaji dengan kajian-kajian permodelan, pengoptimasian, dan pra-rawatan osmotik berultrabunyi konvensional pengeringan udara-panas. Kajian permodelan untuk sifat kinetik pengeringan dan sifat kualitinya adalah berdasarkan model teori dan statistik bagi suhu daripada 55 hingga 75 °C dan ketebalan kepingan daripada 3 hingga 9 mm. Aktiviti air, warna, vitamin C, dan tekstur telah diukur sebagai kualiti buah-jambu batu kering. Teknik superposisi dengan model Midilli-Kucuk menunjukkan kecekapan dalam permodelan proses pengeringan dengan mencapai $R^2 = 0.9991$. Persamaan polinomial tertib kedua telah berjaya menggambarkan kualiti jambu batu kering dengan pekali regresi, $R^2 > 0.7$. Masa pengeringan memberi banyak kesan kepada suhu dan ketebalan ($P < 0.001$); aktiviti air, warna dan vitamin C menunjukkan pergantungan yang kuat kepada suhu ($P < 0.1$); manakala tekstur terutamanya adalah dipengaruhi oleh ketebalan ($P < 0.005$). Nilai optimum bagi suhu pengeringan dan ketebalan kepingan adalah pada 70 °C dan 6 mm selepas ditentukan dengan menggunakan kaedah fungsi keinginan. Pemodelan serentak...
menggunakan teori dan statistik amat diperlukan untuk memberikan kefahaman terhadap proses resapan air dan pengewapan air bersama dengan responden pengeringan dan faktor-faktornya.

Eksperimen seterusnya dijalankan dengan menggunakan ketebalan hirisan yang dioptimumkan iaitu 6 mm sebagai ketebalan sampel. Kesan-kesan pra-rawatan osmotik berultrabunyi terhadap kepingan jambu batu telah dikaji dengan sonikasi tidak langsung yang menggunakan sistem rendaman ultrasonik dan sonikasi langsung yang menggunakan sistem kuar ultrasonik. Eksperimen pra-rawatan telah dikaji dalam ketiga-tiga kepekatan larutan osmotik, iaitu 0, 35, dan 70 °Brix dengan menggunakan rendaman ultrasonik pada kuasa 0 – 2.5 kW untuk masa rendaman sebanyak 20 – 40 minit dan pada masa yang sama, eksperimen juga dijalankan dengan menggunakan kuar ultrasonik pada amplitude 0 – 35% untuk masa rendaman, 6 – 20 minit. Kehilangan air, perolehan gula, pengurangan berat dan perubahan warna telah ditingkatkan dengan ketara \((P < 0.0005)\) dengan kuasa ultrasonik atau amplitud ultrasonik, masa rendaman, dan kepekatan larutan osmotik. Sonikasi tidak langsung dengan sistem rendaman ultrasonik pada 1.75 kW dan 60 minit masa rendaman untuk kepekatan larutan osmostik pada 70 °Brix telah menyumbangkan kehilangan air yang tertinggi sebanyak 34.34%, perolehan gula yang tertinggi sebanyak 8.85%, pengurangan berat yang tertinggi sebanyak 24.17% dan perubahan warna yang boleh diterima berbanding dengan sonikasi langsung dengan kuar ultrasonik.

Kesan-kesan pra-rawatan osmotik berultrabunyi pada optimum untuk ketiga-tiga kepekatan larutan osmotik, iaitu 0, 35, dan 70 °Brix sebelum pengeringan udara-
panas pada suhu optimum, iaitu 70 °C terhadap sifat pengangkutan dan sifat kualiti jambu batu kering telah dikaji. Aplikasi pra-rawatan osmotik berultrabunyi dalam pengeringan udara-panas telah mengurangkan masa pengeringan sebanyak 33.3%, meningkatkan kemerdekaan sebanyak 34.5%, mengurangkan perubahan warna bagi jambu batu kering sebanyak 37.9%, menurunkan kandungan vitamin C sebanyak 32.5%, dan mencapai kekerasannya iaitu 430.1 g – 469.6 g yang setanding dengan jambu batu segar. Penggunaan ultrabunyi dalam proses pengeringan buah-buahan amat digalakkan untuk meningkatkan proses pengeringan dan juga kualiti-kualiti produk kering.
ACKNOWLEDGEMENTS

I would like to express my highest gratitude and appreciation to my esteem supervisor, Assoc. Prof. Ir. Dr. Chin Nyuk Ling, for her precious advice, patience teachings, guidance, encouragement, motivation, and kindness in assisting me throughout the research. I wish to thank Assoc. Prof. Dr. Yus Aniza binti Yusof for her valuable comments and advice throughout my time in research.

My sincere appreciation also dedicated to the technicians of Process and Food Engineering Department laboratory, Mr. Mohd Zahiruddin, Tuan Haji Kamarulzaman Dahlin, and Mr. Raman Morat. I would like to thank them for their guidance, advices, and help assistance during my experiments. Thus, I would like to specially thank to Mr. Raman Morat for his patience waiting and accompanying me each time I did my experiments till late night and even in the weekends. Thank you also to Mr. Chong for supplying the big guava for this study.

Last but not least, I would like thank my course-mate, Quek Meei Chien, and seniors, Teng Li Yuen, Tan Mei Ching, Chia Su Ling, and Chan Ken Wei for their helps, accompany, comments, and encouragement. My love and thanks to my parents and family for giving me their endless love and support throughout my study.
I certify that a Thesis Examination Committee has met on 27 August 2012 to conduct the final examination of Kek Siok Peng on her thesis entitled “Modelling, Optimisation and Ultrasound Pre-osmotic Treatment of Guava Drying” in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U(A) 106] 15 March 1998. The Committee recommends that the student be awarded the degree of Master of Science.

Members of the Thesis Examination Committee were as follows:

**Siti Mazlina Mustapa Kamal, PhD**
Associate Professor  
Faculty of Engineering  
Universiti Putra Malaysia  
(Chairman)

**Rosnita A. Talib, PhD**  
Senior Lecturer  
Faculty of Engineering  
Universiti Putra Malaysia  
(Internal Examiner)

**Farah Saleena Taip, PhD**  
Senior Lecturer  
Faculty of Engineering  
Universiti Putra Malaysia  
(Internal Examiner)

**Ida Idayu Muhamad, PhD**  
Associate Professor  
Faculty of Chemical Engineering  
Universiti Teknologi Malaysia  
(External Examiner)

---

**SEOW HENG FONG, PhD**  
Professor and Deputy Dean  
School of Graduate Studies  
Universiti Putra Malaysia

Date:
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

**Ir. Chin Nyuk Ling, PhD**
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Chairperson)

**Yus Aniza binti Yusof, PhD**
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Member)

---

**BUJANG BIN KIM HUAT, PhD**
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institution.

__________________________
KEK SIOK PENG

Date: 27 August 2012
# TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>iv</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>vi</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>viii</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xviii</td>
</tr>
<tr>
<td>NOMENCLATURE</td>
<td>xix</td>
</tr>
<tr>
<td>CHAPTER</td>
<td></td>
</tr>
<tr>
<td>1 INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Significance of this Study</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Objectives</td>
<td>3</td>
</tr>
<tr>
<td>1.3 Scope of Work and Thesis Outlines</td>
<td>4</td>
</tr>
<tr>
<td>2 LITERATURE REVIEW</td>
<td>6</td>
</tr>
<tr>
<td>2.1 Guava</td>
<td>6</td>
</tr>
<tr>
<td>2.2 Drying</td>
<td>9</td>
</tr>
<tr>
<td>2.3 Modelling</td>
<td>11</td>
</tr>
<tr>
<td>2.3.1 Theoretical Modelling</td>
<td>12</td>
</tr>
<tr>
<td>2.3.2 Time-Temperature Superposition Technique Modelling</td>
<td>15</td>
</tr>
<tr>
<td>2.3.3 Statistical Modelling</td>
<td>18</td>
</tr>
<tr>
<td>2.4 Ultrasound</td>
<td>19</td>
</tr>
<tr>
<td>2.4.1 Ultrasound Application as Pre-treatment in Fruit Drying</td>
<td>20</td>
</tr>
<tr>
<td>2.4.2 Ultrasound System</td>
<td>21</td>
</tr>
<tr>
<td>2.4.3 Processing Parameters</td>
<td>22</td>
</tr>
<tr>
<td>2.5 Dried Fruit Quality Analysis</td>
<td>26</td>
</tr>
<tr>
<td>2.5.1 Colour</td>
<td>28</td>
</tr>
<tr>
<td>2.5.2 Water Activity</td>
<td>29</td>
</tr>
<tr>
<td>2.5.3 Vitamin C</td>
<td>30</td>
</tr>
<tr>
<td>2.5.4 Texture</td>
<td>32</td>
</tr>
<tr>
<td>2.6 Summary</td>
<td>35</td>
</tr>
</tbody>
</table>
# MATERIALS AND METHODS

## 3.1 Introduction

## 3.2 Materials

## 3.3 Drying Process

## 3.4 Determination of Effective Diffusivity

## 3.5 Model Development

### 3.5.1 Theoretical Modelling of Drying Kinetics

### 3.5.2 Superposition Modelling of Drying Kinetics

### 3.5.3 Statistical Modelling of Quality Properties

### 3.5.4 Response Optimisation of Quality Properties

### 3.5.5 Verification of Model

## 3.6 Ultrasound Pre-osmotic Treatments

### 3.6.1 Indirect Sonication

### 3.6.2 Direct Sonication

### 3.6.3 Determination of Effective Ultrasound Intensity

### 3.6.4 Determination of Water Loss, Solid Gain and Weight Reduction

## 3.7 Ultrasound Pre-osmotic Treatments assisted to Hot-air Drying

## 3.8 Dried Guava Quality Properties Analysis

### 3.8.1 Water Activity

### 3.8.2 Colour

### 3.8.3 Vitamin C

### 3.8.4 Texture

## 3.9 Experimental Design

## 3.10 Statistical Analysis

# MODELLING AND OPTIMISATION STUDIES OF HOT-AIR DRIED GUAVA SLICES

## 4.1 Introduction

## 4.2 Drying Characteristics of Dried Guava

## 4.3 Effective Diffusivity

## 4.4 Drying Kinetics with Semi-theoretical Models

## 4.5 Drying Kinetics with Time-Temperature Superposition Technique

## 4.6 Statistical Model for Product Quality of Dried Guava

## 4.7 Optimisation of Dried Guava Attributes

## 4.8 Verification of Optimised Drying

## 4.9 Summary
5 DIRECT AND INDIRECT ULTRASOUND ASSISTED PRE-OSMOTIC TREATMENT IN DRYING OF GUAVA SLICES 86
5.1 Introduction 86
5.2 Effect of Ultrasound Pre-osmotic Treatment on Guava Slices 86
  5.2.1 Temperature Rise Profiles and Effective Ultrasound Intensity 87
  5.2.2 Water Loss 89
  5.2.3 Solid Gain 92
  5.2.4 Weight Reduction 93
  5.2.5 Colour Change 95
  5.2.6 The Optimum Condition for Ultrasound Pre-osmotic Treatment 96
5.3 Effects of Ultrasound Assisted Pre-osmotic Treatment on Hot-air Dried Guava 98
  5.3.1 Drying Time, Effective Diffusivity and Drying Rate Constant 99
  5.3.2 Quality Properties of Dried Guava 102
5.4 Summary 107

6 SUMMARY, CONCLUSION AND RECOMMENDATIONS FOR FUTURE RESEARCH 108
6.1 Introduction 108
6.2 Summary and Conclusion 108
6.3 Recommendations for Future Work 110

REFERENCES 111
APPENDICES 120
BIODATA OF STUDENT 143
LIST OF PUBLICATIONS 144