UNIVERSITI PUTRA MALAYSIA

IMPROVING BUCKLING AND POST-BUCKLING OF SHAPE MEMORY ALLOY LAMINATED COMPOSITE PLATES SUBJECTED TO MECHANICAL AND THERMAL LOADING USING FINITE ELEMENT METHOD

ZAINUDIN BIN A.RASID

FK 2012 81
IMPROVING BUCKLING AND POST-BUCKLING OF SHAPE MEMORY ALLOY LAMINATED COMPOSITE PLATES SUBJECT TO MECHANICAL AND THERMAL LOADING USING FINITE ELEMENT METHOD

By

ZAINUDIN BIN A.RASID

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

November 2012
Improving Buckling and Post-Buckling of Shape Memory Alloy Laminated Composite Plates Subjected to Mechanical and Thermal Loading Using Finite Element Method

By

Zainudin Bin A. Rasid

November 2012

Chairman: Assoc. Prof. Rizal Zahari, PhD

Faculty: Engineering

This research work focuses on simulation work involving development of finite element formulations and its finite element based software validated against experimental results reported in the literature to subsequently facilitate parametric studies. Nitinol shape memory alloy with its well-known property of the shape memory effect is used to improve post-buckling of laminated composite plates subjected to mechanical, thermal and thermo-mechanical loadings. Two finite element formulations for the post-buckling of composite plates with embedded shape memory alloy, namely the total strain and the incremental strain formulations are used. Both formulations are derived based on the first order shear deformation theory while the strength of material approach is used to include the effect of recovery stress in the constitutive equation. Thermal loading can be uniform or non-uniform throughout the width and thickness of the composite plates. The properties and recovery stress of the nitinol are either determined by solving the Brinson’s model or taken from experimental data of others. The formulations were solved using the Newton-Raphson’s method and source codes were developed for this purpose. Parametric studies were conducted theoretically to investigate the effects of the shape memory alloy on the post-buckling behaviour of composite plates with regard to several composite related and shape
memory alloy related parameters. The addition of shape memory alloy wires within layers of composite plates has resulted in the significant improvement in the composite critical loads. In the case of simply supported boundary condition, the increase of the critical load can be up to 70% for the shape memory alloy layer thickness equal to one fourth of the total thickness of other layers. The post-buckling paths of the composite plates subjected to mechanical, thermal and thermo-mechanical loadings are stable and substantially improved after the addition of the shape memory alloy. For the four types of configurations under studied here, the improvement of the active strain energy tuning method is at the highest in the case of the symmetric angle-ply plate where bifurcation for this plate occurs at the ratio of the load over critical load of \(P/P_{cr} = 3 \). It is interesting also to see that while the best mechanical post-buckling paths occur if the shape memory alloy layer is located in the middle of the plate, the location of the shape memory alloy layers has no effect on the thermal post-buckling paths. In the case of the tent-like temperature distribution, the non-uniform temperature distribution where the ratio of the temperature of the uniform temperature rise part to the temperature gradient, \(T_1/T_0 = 1 \) has allowed the post-buckling response to occur earlier compared to the case of \(T_0 = 0 \) loading. At the same time for both cases of the active property tuning and the active strain energy tuning, the post-buckling paths are improved with the increase of the ratio \(T_1/T_0 \). Furthermore, the thermal post-buckling paths that are degraded initially due to the compressive loading are shown to jump upward significantly with the addition of the shape memory alloy. At the end, this research has shown that the developed model and the source codes are able not only to show the significant improvement made by the shape memory alloy on the post-buckling behaviour of composite plates subjected to mechanical, thermal and thermo-mechanical loadings but also to demonstrate the post-buckling behaviour of the shape memory alloy composite plates subjected to several parameter changes.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

PENAMBAHBAIKAN KEPADA LENGKOKAN AND PASCALENGKOKAN BAGI PLAT KOMPOSIT TERLAMINAT DENGAN ALOI MEMORI BENTUK YANG DIKENAKAN BEBANAN MEKANIK DAN HABA MENGGUNAKAN KAEDAH UNSUR TERHINGGA

Oleh

ZAINUDIN BIN A.RASID

November 2012

Pengerusi: Prof. Madya Rizal Zahari, PhD

Fakulti: Kejuruteraan

memori bentuk di antara lapisan plat komposit telah menghasilkan penambahbaikan yang bererti kepada beban kritikal. Untuk kes keadaan sempadan plat disokong mudah, penambahan beban kritikal sebanyak 70% terhasil bila ketebalan lapisan aloi memori bentuk adalah satu perempat ketebalan lapisan yang berbaki. Laluan pascalengkocokan bagi plat komposit adalah didapati stabil dengan penambahbaikan yang bererti bagi semua kes-kes bebanan mekanik, haba dan mekanik haba setelah aloi memori bentuk dibenam. Bagi empat jenis tatarajah yang dikaji di sini, penambahbaikan adalah tertinggi dalam kes plat lapis-serong simetri di mana dwi-kewujudan berlaku pada nisbah beban kepada beban kritikal, \(P/P_{cr} = 3 \). Adalah menarik untuk menyaksikan laluan pascalengkocokan bagi kes bebanan haba tidak dipengaruhi oleh kedudukan lapisan aloi memori bentuk sedangkan bagi kes bebanan mekanik, laluan yang terbaik adalah bila lapisan aloi memori bentuk berada di tengah-tengah plat. Bagi kes bebanan taburan suhu seperti khemah, taburan suhu yang tak seragam di mana nisbah suhu bahagian tak seragam kepada suhu bahagian tetap, \(T_1/T_0 = 1 \) telah membenarkan tindakbalas pascalengkocokan berlaku lebih awal berbanding kes \(T_0 = 0 \). Pada masa yang sama, bagi kedua-dua kes penalaan sifat aktif dan penalaan tenaga terikan aktif, laluan pascalengkocokan bertambah baik dengan penambahan nisbah suhu \(T_1/T_0 \). Tambah pula, laluan pascalengkocokan yang telah terkurang akibat bebanan mekanik yang telah dikenakan lebih awal telah didapati mengalami anjakan yang besar ke arah kedudukan lebih baik dengan penambahbaikan aloi memori bentuk. Akhir sekali, kajian ini telah menunjukkan bahwa model-model yang telah dibangunkan bersama kod sumbernya telah bukan sahaja menzahirkan penambahbaikan yang bererti yang dibuat oleh aloi memori bentuk terhadap kelakuan pascalengkocokan plat komposit berlapis yang dikenakan beban mekanik, haba dan haba-mekanik bahkan juga memperlihatkan kelakuan pascalengkocokan plat terhadap beberapa perubahan parameter.
ACKNOWLEDGEMENTS

I would like to express my sincere gratitude and deep thanks to my supervisor Assoc. Prof. Dr. Rizal Zahari for his kind assistance, support, advice, encouragement and suggestions throughout this research and during the preparation of this thesis.

A particular note of thanks is also given to members of supervisory committee, Dr. Dayang Laila Abang Abdul Majid and Dr. Azmin Shakrine Mohd Rafie for their suggestions and constructive criticisms given at stages of this study.

My ardent pray is intended to my late father, Hj Abdul Rashid Md Yasin and my late mother, Hjh. Zainun Hj Ali for their past love and prays that have pushed me forward during difficult time.

And great thanks to my wife, Zukarni Hashim and my six children: Ihsan, Nasuha, Iman, Aisyah, Umar and Sarah for their patient and perseverance.
I certify that a Thesis Examination Committee has met on the 19th November 2012 to conduct the final examination of Zainudin bin A. Rasid on his thesis entitled “Improving Buckling and Post-Buckling of Shape Memory Alloy Laminated Composite Plates Subjected to Mechanical and Thermal Loading Using Finite Element Method” in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U. (A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

Renuganth A/l Varatharajoo, PhD, P. Eng.
Professor
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Mohd Sapuan Salit, PhD, P. Eng.
Professor
Faculty of Engineering
Universiti Putra Malaysia
(Internal Examiner)

Faizal Bin Mustapha, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Internal Examiner)

Mohammed Sarwar Janghashmi, PhD
Professor
Faculty of Mechanical and Manufacturing
Dublin City University
Ireland
(External Examiner)

PROF. DR. SEOW HENG FONG
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 19th December, 2012
This thesis was submitted to the senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Rizal Zahari, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Azmin Shahrin Mohd Rafie, PhD
Senior lecturer
Faculty of Engineering
Universiti Putra Malaysia
(Member)

Dayang Laila Abang Abdul Majid, PhD
Senior lecturer
Faculty of Engineering
Universiti Putra Malaysia
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institution.

ZAINUDIN A. RASID

Date: 19th November, 2012
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ABSTRACT</td>
<td>ii</td>
</tr>
<tr>
<td></td>
<td>ABSTRAK</td>
<td>iv</td>
</tr>
<tr>
<td></td>
<td>ACKNOWLEDGEMENTS</td>
<td>vi</td>
</tr>
<tr>
<td></td>
<td>APPROVAL</td>
<td>vii</td>
</tr>
<tr>
<td></td>
<td>DECLARATION</td>
<td>ix</td>
</tr>
<tr>
<td></td>
<td>LIST OF TABLES</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>LIST OF FIGURES</td>
<td>xi</td>
</tr>
<tr>
<td></td>
<td>LIST OF ABBREVIATIONS</td>
<td>xvii</td>
</tr>
<tr>
<td>1</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1.1 Background</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1.2 Problem statements</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>1.3 Hypothesis</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>1.4 Objectives</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>1.5 Scope</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>1.6 Applications</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>1.7 Thesis organization</td>
<td>15</td>
</tr>
<tr>
<td>2</td>
<td>LITERATURE REVIEW</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>2.1 Laminated Composite</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>2.2 Thermo-mechanical Post-buckling of Composite Plates</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>2.2.1 Mechanical loading</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>2.2.2 Thermal loading</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>2.2.3 Thermo-mechanical loading</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>2.3 The effects of SMA on structural behaviours</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>2.3.1 Behaviours of the embedded SMA</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>2.3.2 Control strategies and SMA configuration</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>2.3.3 Predicting the SMA behaviours</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>2.3.3.1 SMA constitutive models</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>2.3.3.2 Experimental prediction of Recovery Stress</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>2.4 Post-buckling improvement of composite plates using SMA</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>2.5 Summary</td>
<td>45</td>
</tr>
</tbody>
</table>
3 MATERIALS AND METHODS

3.1 Material

3.1.1 Material properties

3.1.2 Configuration of the SMA composite plates

3.1.3 Recovery stress

3.1.3.1 Experimental recovery stress

3.1.3.2 Recovery stress from the Brinson’s model

3.1.3.3 Material parameter

3.1.3.4 Results from the Brinson’s model

3.2 Methods

3.2.1 Total strain formulation

3.2.1.1 Effective properties

3.2.1.2 Stress-strain relationship

3.2.1.3 Displacement field and strain

3.2.1.4 Stress resultants

3.2.1.5 Finite element implementation

3.2.1.6 Principle of virtual work

3.2.2 Incremental strain formulation

3.2.2.1 Displacement field and strain

3.2.2.2 Stress resultant

3.2.2.3 Finite element implementation

3.2.2.4 Principle of virtual work

3.3 Source code development

3.4 Summary

4 RESULTS AND DISCUSSIONS

4.1 Validation

4.1.1 Linear buckling analyses of SMA composite plates

4.1.2 Mechanical post-buckling analysis

4.1.3 Thermal post-buckling analysis

4.1.4 Thermal post-buckling analysis due to non-uniform temperature distribution

4.2 The Linear Buckling Analysis

4.2.1 The effect of the thickness of the SMA layer
4.2.2 The effect of the composite number of layers 103
4.2.3 The effect of the angle of orientations 105
4.2.4 The effect of the composite configurations 106
4.2.5 The effect of the location of the SMA layers 107
4.2.6 The effect of the volume fraction of nitinol 109
4.2.7 The effect of the activation temperature of the SMA wires 110
4.2.8 The effect of the initial strain of the SMA wires 112
4.2.9 Summary of the linear buckling 113

4.3 The Mechanical Post-buckling Analysis 115
4.3.1 The effect of the composite configurations 115
4.3.2 The effect of the location of the SMA layers on critical loads 120
4.3.3 The effect of the SMA activation temperatures 123
4.3.4 The effect of the SMA volume fractions 125
4.3.5 The effect of the SMA initial strain 126
4.3.6 Summary of the mechanical post-buckling analysis 128

4.4 The Thermal Post-buckling Analysis 129
4.4.1 The effect of the boundary conditions 129
4.4.2 The effect of the SMA volume fraction 131
4.4.3 The effect of the initial strain 132
4.4.4 The effect of the composite configurations 133
4.4.5 The effect of the number of layers of the composite plate 135
4.4.6 The effect of the location of the SMA layers 136
4.4.7 Thermal post-buckling due to tent-like temperature distribution 137
4.4.8 Thermal post-buckling due to parabolic and linearly varied through thickness temperature distributions 142
4.4.9 Summary of the thermal post-buckling analysis 148

4.5 The Thermo-mechanical Post-buckling Analysis 150
4.5.1 The thermo-mechanical post-buckling of composite plates without SMA 151
4.5.2 The SMA post-buckling improvement 153
4.5.3 Summary of the thermo-mechanical post-buckling analysis 157

4.6 Summary 157