UNIVERSITI PUTRA MALAYSIA

MECHANICAL PROPERTIES OF TIN MINE TAILING SAND FOR GREENSAND CASTING MOULD

AZHAR BIN ABDULLAH

FK 2012 77
MECHANICAL PROPERTIES OF TIN MINE TAILING SAND FOR GREENSAND CASTING MOULD

By

AZHAR BIN ABDULLAH

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

October 2012
DEDICATION

TO WHOM THEIR TRUE LOVE AND SUPPORT WERE BEHIND MY SUCCESS; MY FATHER, MOTHER, WIFE, SON, DAUGHTERS, BROTHERS, SISTERS AND TO THE SOUL OF MY GRANDFATHER, HJ KASIM, THE PERSON WHO ENCOURAGED ME TO PURSUE THIS STUDY. MAY ALLAH BLESS HIM AND GRANT HIM PEACE.
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy

MECHANICAL PROPERTIES OF TIN MINE TAILING SAND FOR GREENSAND CASTING MOULD

By

AZHAR BIN ABDULLAH

OCTOBER 2012

Chair: Professor Shamsuddin bin Sulaiman, PhD

Faculty: Engineering

Tailing sand is the residue from tin extraction, containing between 94% to 99.5% silica. It is abundant especially in Kinta Valley of state of Perak, Klang Valley of state of Selangor and certain areas in Johor, Negeri Sembilan and Pahang in Peninsular Malaysia. Many abandon tailing sand dump areas are easily to access due to the reason of transportation of tin and at present most of them have been covered by bushes even though there are efforts to convert the land for agriculture, industrial and housing estate. The worst scenario is issue of illegal activities of tailing sand mining including sand stealing. The purpose of this research is to investigate the mechanical properties of tailing sand as aggregate for making greensand casting mould. Five samples from Tronoh and Tanjung Tualang in Perak state; Batang Berjuntai in Selangor; Jemaluang in Johor and Gambang in Pahang were gathered.
The experiments for this investigation are strictly obeying the American Foundrymen Society (AFS) standard of procedures. The investigation involved the process of; identifying locations for sampling of tailing sand with high content of silica in Peninsular Malaysia, conducting the mechanical sieve grading to identify the size spread, plotting the grain size distribution and calculating the average grain size. Further on with classifying the grain shape, the clay grade, the effects of controlled additions of clay (bentonite) and water and determining the working range on the mechanical moulding properties of tailing sand. The investigation involved comparing the mechanical properties of the tailing sand to mould sand taken from RCS Manufacturing Sdn. Bhd., the company supplying mould sand to the Proton Casting Plant, manufacturer of engine components in Malaysia and the requirement for foundry sand applications listed by Foseco Ferrous Foundryman’s Handbook (Foseco).

The size spread, grain size distribution, average grain size and grain shape of tailing sand matched the Foseco requirement and RCS, which are well sorted and uniform, within the required size (217 to 281 µm) and has sub angular with compound sphericity shape. Test on the clay grade showed that clay grade is between 0.47% -2.07%, which resembles the true clay value in the sand.

Cylindrical test piece specimens dimensioning of Ø50 mm×50 mm in height from various sand–clay-water ratios, were produced by applying three ramming blows of 6.666 kg each using Ridsdale-Dietert metric standard rammer. The specimens were tested for green compression strength using Ridsdale-Dietert universal sand strength machine and permeability number with Ridsdale-Dietert permeability meter. Before the
tests were conducted, the moisture content was measured using AND MX50 moisture analyser.

The working range for samples with 2.9% by weight (wt) of water addition were at allowable clay content ranged from 2.5-5.0wt% where green compression strength ranged from 25 kN/m2 to 43 kN/m2 and permeability number from 63 to 225. The samples with 4.8wt% of water addition have the working range at the allowable clay content ranged from 4.0-6.5wt% where the green compression strength ranged from 35 kN/m2 to 52 kN/m2 and permeability number from 76 to 252.

The working range for samples bonded with 3.8wt% of clay were at allowable moisture content ranged from 3.0-4.0wt% where the green compression strength ranged from 20 kN/m2 to 48 kN/m2 and permeability number from 90 to 255. If bonded with 7.4wt% clay, the allowable moisture content ranged from 3.5-6wt% where the green compression strength ranged from 33 kN/m2 to 70 kN/m2 and permeability number from 70 to 220.

Finally, the investigation indicated that tailing sand is suitable as foundry sand for making greensand casting mould where the allowable clay and moisture content of tailing sand samples are within the range in application for making greensand casting mould for ferrous and non-ferrous metal.
SIFAT-SIFAT MEKANIKAL PASIR BEKAS LOMBONG TIMAH UNTUK ACUAN TUANGAN PASIR LEMBAP

Oleh
AZHAR BIN ABDULLAH

Oktober 2012

Penyelia: Professor Shamsuddin bin Sulaiman, PhD

Fakulti: Kejuruteraan

Sebaran saiz, agihan saiz bijian, purata saiz bijian dan bentuk bijian adalah menepati kehendak Foseco dan RCS, dimana teragih seragam dengan baik, berada dalam saiz yang dikehendaki (217 µm ke 281 µm) dan mempunyai bentuk separa bersudut yang agak bulat. Ujian gred tanah liat menunjukkan mereka mempunyai peratus gred tanah liat yang boleh diterima iaitu antara 0.47% -2.07%.

Spesimen ujian berbentuk selinder yang berukuran Ø50 mm×50 mm tinggi dari pelbagai nisbah pasir-tanah liat-air dihasilkan melalui hentaman 6.666 kg menggunakan ‘Ridsdale-Dietert metric standard rammer’. Spesimen kemudian diuji kekuatan mampatan lembap menggunakan ‘Ridsdale-Dietert universal sand strength machine’ dan nombor ketelapan menggunakan ‘Ridsdale-Dietert permeability meter’. Sebelum ujian
dilaksanakan, kandungan kelembapan diukur menggunakan penganalisa kelembapan model AND MX50.

Julat kerja bagi sampel yang ditambah air sebanyak 2.9% berdasarkan berat (wt) adalah pada kandungan tanah liat dibenarkan dari julat 2.5wt% ke 5.0wt% di mana kekuatan mampatan lembap berada pada julat 25 kN/m² ke 43 kN/m² dan nombor ketelapannya dari 63 ke 225. Jika sampel ditambah 4.8wt% air, julat kerjanya adalah pada kandungan tanah liat dibenarkan pada 4.0wt% ke 6.5wt% di mana kekuatan mampatan lembapnya berada pada 35 kN/m² ke 52 kN/m² dan nombor ketelapannya dari 76 ke 252.

Julat kerja bagi sampel yang diikat dengan 3.8wt% tanah liat adalah pada kandungan kelembapan dibenarkan dari 3.0wt% ke 4.0wt% dimana kekuatan mampatan lembapnya dari 20 kN/m² ke 48 kN/m² dan nombor ketelapannya adalah dari 90 ke 255. Jika diikat dengan 7.4wt% tanah liat, julat kerjanya berada pada kandungan kelembapan dibenarkan dari 3.5wt% ke 6wt% di mana kekuatan mampatan lembapnya dari 33 kN/m² ke 70 kN/m² dan nombor ketelapannya dari 70 ke 220.

Akhir sekali, penyelidikan menunjukkan pasir bekas lombong adalah sesuai dijadikan pasir acuan bagi pembuatan acuan tuangan pasir lembap dengan kandungan tanah liat dan kelembapan yang dibenarkan adalah dalam julat yang biasa diamalkan dalam applikasi pembuatan acuan pasir tuangan lembap untuk logam ferus dan bukan ferus.
ACKNOWLEDGEMENTS

In the name of Allah, most gracious, most merciful, all praise and thanks are due to Allah, and peace and blessings be upon His Messenger, Muhammad SAW. I would like to express the most sincere appreciation to those who made this work possible; supervisor, member of supervisory committee, technicians, my family and friends.

I would like to thank Prof. Dr. Shamsuddin Sulaiman for providing me the opportunity to complete my PhD studies under his valuable guidance, for the many useful advise and discussions, for his constant encouragement and guidance, and for co-authoring and reviewing some of my publications, where his practical experience and technical knowledge made this research and those publications more interesting and relevant. In addition, special thanks extend to the supervisory committee members; Dr. B.T. Hang Tuah bin Baharudin, Dr. M.K.A Ariffin and Dr. Vijay. I am grateful for their willingness to serve on my supervisory committee, constant encouragement, helpful advice and many fruitful discussions.

I am grateful to Kementerian Pengajian Tinggi Malaysia for offering me the scholarship and FRGS for pursuing the PhD degree and for funding this research at Universiti Putra Malaysia.

Thanks and acknowledgements to my parents, wife and children who deserve my deepest appreciation. I am grateful for the countless sacrifices they made to ensure that I could pursue my ambition and always being there for me.
Last but not the least; very thanks to all the technicians especially Mr. Saifuddin for their meaningful help during the experiments in the laboratories and also to Mr Ng Hwa Kian, Executive Director of RCS Manufacturing Sdn. Bhd., the company supplying mould sand to Proton Casting Plant for his kind contribution of RCS mould sand.
I certify that a Thesis Examination Committee has met on 29th October 2012 to conduct the final examination of Azhar Bin Abdullah on his thesis entitled “Mechanical Properties of Tin Mine Tailing Sand for Greensand Casting Mould” and the in accordance with the Universities and University College Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U. (A) 106] 15 March 1998. The committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

Mohd Sapuan B. Salit, PhD
Professor
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Napsiah Bt. Ismail, Ph.D
Professor
Faculty of Engineering
Universiti Putra Malaysia
(Internal Examiner)

Tang Sai Hong, Ph.D
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Internal Examiner)

C.R. Chatwin, Ph.D
Professor
Department of Engineering and Design
University of Sussex
United Kingdom
(External Examiner)

SEOW HENG FONG, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
This thesis was submitted to the Senate of the Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the supervisory committee were as follows:

Shamsuddin bin Sulaiman, PhD
Professor
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

B.T. Hang Tuah bin Baharudin, PhD
Senior Lecturer
Faculty of Engineering
Universiti Putra Malaysia
(Member)

Mohd Khairol Anuar bin Mohd Ariffin, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Member)

T.R. Vijayaram, PhD
Principal Lecturer
Faculty of Engineering and Technology (FET)
Multimedia University
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

I declare that the thesis is my original work except for quotations and citations, which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or other institutions.

AZHAR BIN ABDULLAH

Date: 29 October 2012
TABLE OF CONTENTS

DEDICATION ii
ABSTRACT iii
ABSRAK vi
ACKNOWLEDGEMENT ix
APPROVAL SHEETS xi
DECLARATION xiii
LIST OF TABLES xxi
LIST OF FIGURES xxiii
LIST OF ABBREVIATIONS xxvii

CHAPTER

1 INTRODUCTION

Problem Statement 2
Objectives of the Research 4
Scope of the Work 4
Thesis Layout 5

2 LITERATURE REVIEW

2.1 Introduction 7
2.2 Sand Casting 8
2.2.1 Greensand 9
2.2.2 Drysand 11
2.2.3 Chemical Bonded Sand 12
2.3 Foundry Sand Minerals 13
2.3.1 Silica Sand 14
2.3.2 Zircon Sand 16
2.3.3 Chromite Sand 16
2.3.4 Olivine Sand 18
2.3.5 Comparison of Foundry Sand Minerals 18
2.4 Silica Sand in Malaysia 19
2.4.1 Natural Silica 20
4 RESULTS AND DISCUSSION

4.1 Introduction 68

4.2 Grain Size Distribution 68

4.3 Average Grain Size 78

4.4 Grain Shape 81

4.5 Clay Grade 89

4.6 Green Compression Strength 90
 4.6.1 Effect of Clay on the Green Compression Strength 90
 4.6.2 Effect of Moisture on the Green Compression Strength 97

4.7 Permeability Number 103
 4.7.1 Effect of Clay Content on the Permeability Number 103
 4.7.2 Effect of Moisture Content on the Permeability Number 109

4.8 Working Range for Optimum Green Compression Strength, Permeability Number, Allowable Clay and Moisture Content.
 4.8.1 Tailing Sand Samples Added with 2.9wt% of Water 116
 4.8.2 Tailing Sand Samples Added with 4.8wt% of Water 120
 4.8.3 Tailing Sand Samples Bonded with 3.8wt% of Clay 125
 4.8.4 Tailing Sand Samples Bonded with 7.4wt% of Clay 130

4.9 The Greensand Casting Mould 135

4.10 Summary 136
5 CONCLUSION AND RECOMMENDATION FOR FUTURE RESEARCH

5.1 Introduction
5.2 Conclusion
5.3 Thesis Contribution
5.4 Recommendation

REFERENCES

APPENDICES

APPENDIX A: Chemical Composition and Reserve of the Tailing Sand from the Identified Locations.

APPENDIX B: Grain Shape of Mould Sand from RCS Manufacturing Sdn. Bhd., AFS, Foseco and Other Tailing Sand Samples.

APPENDIX C: Grain Size Distribution for Chelford 60 Silica Sand ((sand commonly used in the UK as a base sand and for resin bonded moulds and cores)

APPENDIX D: Grain Size Distribution for Typical Grading of Sand Suitable for Iron or Steel Casting according to Foseco Requirement.

APPENDIX E: Grain Size Distribution for RCS Manufacturing Sdn. Bhd.

APPENDIX F: Clay Content and Green Compression Strength for Tailing Sand Samples Added with 2.9wt% and 4.8wt% of Water.

APPENDIX G: Effects of Clay Content on Green Compression Strength for Mould Sand from RCS Manufacturing Sdn. Bhd. Added with 2.9wt% and 4.8wt% of Water.

APPENDIX H: Green Compression Strength Curves for
Tailing Sand Samples Compared to RCS. Added with 2.9wt% and 4.8wt% water.

APPENDIX I: Moisture Content and Green Compression Strength for Tailing Sand Samples. Bonded with 3.8wt% and 7.4wt% of Clay.

APPENDIX J: Effects of Moisture Content on Green Compression Strength for RCS. Bonded with 3.8wt% and 7.4wt% of Clay.

APPENDIX K: Green Compression Strength Curves of Tailing Sand Samples Compared to RCS. Bonded with 3.8wt% and 7.48wt% Clay.

APPENDIX L: Permeability Number for Tailing Sand Samples. Added with 2.9wt% and 4.8wt% of Water.

APPENDIX M: Effects of Clay Content on Permeability Number for Mould Sand from RCS Manufacturing Sdn. Bhd. Added with 2.9wt% and 4.8wt% of Water.

APPENDIX N: Comparison on Permeability Curves for Tailing Sand Samples with RCS. Added with 2.9wt% and 4.8wt% Water.

APPENDIX O: Permeability Number for Tailing Sand Samples. Bonded with 3.8wt% and 7.4wt% Clay.

APPENDIX P: Effects of Moisture Content on the Permeability Number for Mould Sand from RCS Manufacturing Sdn. Bhd. Bonded with 3.8wt% and 7.4wt% Clay.

APPENDIX Q: Comparison on Permeability Curves for Tailing Sand Samples to RCS. Bonded with 3.8wt% and 7.4wt% Clay.
APPENDIX R: Clay Content, Green Compression Strength and Permeability Number for Tailing Sand Samples. Added with 2.9wt% and 4.8wt% of Water.

APPENDIX S: Working Range for Optimum Green Compression Strength, Permeability Number and Optimum Allowable Clay Content for Mould Sand from RCS Manufacturing Sdn. Bhd. Added with 2.9wt% and 4.8wt% Water.

APPENDIX T: Moisture Content, Green Compression Strength and Permeability Number for Tailing Sand Samples. Bonded with 3.8wt% and 7.4wt% of Clay.

APPENDIX X: Paper C: Testing for Green Compression
Strength and Permeability on the Tailing Sand Samples Gathered from Ex Tin Mines in Perak State, Malaysia.

BIODATA OF STUDENT
LIST OF PUBLICATIONS