UNIVERSITI PUTRA MALAYSIA

ENHANCEMENT OF PHYSICAL PROPERTIES OF SUGAR PALM (ARENGA PINNATA MERR.) FIBRE-REINFORCED UNSATURATED POLYESTER COMPOSITES VIA VACUUM RESIN IMPREGNATION

MOHAMAD RIDZWAN BIN ISHAH

FK 2012 62
ENHANCEMENT OF PHYSICAL PROPERTIES OF SUGAR PALM (ARENGA PINNATA MERR.) FIBRE-REINFORCED UNSATURATED POLYESTER COMPOSITES VIA VACUUM RESIN IMPREGNATION

MOHAMAD RIDZWAN BIN ISHAK

DOCTOR OF PHILOSOPHY

UNIVERSITI PUTRA MALAYSIA

2012
ENHANCEMENT OF PHYSICAL PROPERTIES OF SUGAR PALM (ARENGA PINNATA MERR.) FIBRE-REINFORCED UNSATURATED POLYESTER COMPOSITES VIA VACUUM RESIN IMPREGNATION

By

MOHAMAD RIDZWAN BIN ISHAK

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

June 2012
"Bring me blocks of iron." At length, when he had filled up the space between
the two steep mountain-sides, He said, "Blow (with your bellows)" Then, when
he had made it (red) as fire, he said: "Bring me, that I may pour over it, molten
lead."

Al-Kahfi 18:65
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy

ENHANCEMENT OF PHYSICAL PROPERTIES OF SUGAR PALM (ARENGA PINNATA MERR.) FIBRE-REINFORCED UNSATURATED POLYESTER COMPOSITES VIA VACUUM RESIN IMPREGNATION

By

MOHAMAD RIDZWAN BIN ISHAK

June 2012

Chairman : Zulkiflle Leman, PhD

Faculty : Faculty of Engineering

This research was carried out to study the enhancement of properties of sugar palm (Arenga pinnata) fibre reinforced unsaturated polyester composites. The study was divided into three stages, where the first stage focused on the characterisation of tensile, chemical properties, thermogravimetric analysis (TGA) and fourier transform infrared (FT-IR) spectra of the sugar palm fibres obtained from different heights (1, 3, 5, 7, 9, 11, 13 and 15 m) of a sugar palm tree. It was observed that the fibres obtained from dead palm frond region showed the lowest tensile properties and considered to be biologically degraded. Chemical analysis of the fibres showed that the content of cellulose, hemicelluloses and lignin had a direct relationship to the increase in tensile strength, elongation at break and modulus of the fibre respectively. The second stage of the study investigated the effects vacuum resin impregnation on physical and mechanical properties of the sugar palm fibres. The fibres were impregnated with two different impregnation agents: phenol formaldehyde (PF) and unsaturated polyester (UP) at a constant pressure of 1000 mmHg at different impregnation times (0, 5, 10, 15, 20 and 25 minutes). Both physical and mechanical properties of the fibres showed significant improvement after being impregnated for 5 minutes and no improvement when impregnation time was extended from 10 to 25
minutes. The study further investigated the effects of elevating impregnation pressure (1000, 900, 800, 700, 600 and 500 mmHg) on physical and mechanical properties of sugar palm fibre with PF and UP at constant impregnation time of 5 minutes. It was observed that the moisture content (MC) of the impregnated fibres dropped from 8.19% to 0.75-0.46% for PF and 0.87-0.44% for UP, while the water absorption (WA) was reduced from 116.82% to 61.64-22.52% for PF and 63.49-23.31% for UP. The tensile strength increased from 243.77 MPa to 251.39-297.67 MPa for PF and 287.84-344.71 MPa for UP. The tensile moduli increased from 3.07 GPa to 3.1-3.98 GPa for PF and 3.15-3.98 GPa for UP. The elongation at break decreased from 25.16% to 17.66-6.26% for PF and 24.24-19.05% for UP. Low tensile strength and elongation at break of PF-impregnated fibres showed that the fibres were inferior in toughness (48.51 MJ/m3 to 33.08-12.29 MJ/m3) compared to UP-impregnated fibres (48.51 MJ/m3 to 57.56-45.21 MJ/m3). The third stage was continued by impregnating the fibres with UP resin at impregnation pressure of 600 mmHg for 5 minutes. The interfacial shear strength (IFSS), TGA and FT-IR spectra of UP-impregnated sugar palm fibre were initially determined before the fibres were used as reinforcement in composites at 10, 20, 30, 40 and 50% fibre loadings. It was observed that the impregnation process increased the fibre-matrix interfacial bonding by 72.46%. The lower moisture uptake of the impregnated fibre than the control was qualitatively proven by TGA and FT-IR spectra. In general, the impregnated composites showed better tensile and flexural properties than the controls where 30% fibre loading gave the highest values. It was also observed that MC, WA, thickness swelling (TS) and linear expansion (LE) of impregnated composites were lower than the controls and the moisture excluding efficiency (MEE) and anti-swelling efficiency (ASE) were also increased.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

PENAMBAHBAIKAN SIFAT FIZIKAL KOMPOSIT POLIESTER TAK TEPU DIPERKUAT GENTIAN IJUK (ARENGA PINNATA MERR.) MELALUI VAKUM RESIN IMPREGNASI

Oleh

MOHAMAD RIDZWAN BIN ISHAK

Jun 2012

Pengerusi : Zulkifle Leman, PhD
Fakulti : Fakulti Kejuruteraan

Penyelidikan ini dijalankan bagi mengkaji penambahbaikan sifat-sifat komposit poliester tak tepu diperkuat gentian ijuk (Arenga pinnata). Penyelidikan ini dibahagikan kepada 3 peringkat kajian di mana peringkat pertama adalah pencirian sifat tegangan, komposisi kimia, analisis gravimetrik haba (TGA) dan spektroskopi (FT-IR) gentian ijuk yang diperolehi daripada ketinggian yang berbeza (1, 3, 5, 7, 9, 11, 13 and 15 m) dari sebatang pokok enau. Didapati bahawa gentian yang diperolehi dari bahagian pelepah reput mempunyai sifat tegangan yang paling rendah dan dianggap terdegridasi secara biologi. Analisis kimia ke atas gentian menunjukkan bahawa kandungan selulosa, hemiselulosa dan lignin mempunyai hubungan langsung terhadap peningkatan kekuatan tegangan, pemanjangan pada takat putus dan kekakuan tegangan. Peringkat kedua kajian adalah mengkaji terhadap kesan vakum impregnasi resin terhadap sifat-sifat fizikal dan mekanikal gentian ijuk. Gentian telah diimpregnasi dengan menggunakan dua agen impregnasi; fenol formaldehyde (PF) and poliester tak tepu (UP) pada tekanan seragam 1000 mmHg dengan masa impregnasi yang berbeza (0, 5, 10, 15, 20 and 25 min). Kedua-dua sifat fizikal dan mekanikal gentian menunjukkan peningkatan yang signifikan selepas diimpregnasi selama 5 minit dan tiada peningkatan yang signifikan selepas masa impregnasi
ditambah dari 10 hingga 25 minit. Kajian selanjutnya mengkaji kesar penambahan tekanan impregnasi (1000, 900, 800, 700, 600 and 500 mmHg) terhadap sifat-sifat fizikal dan mekanikal gentian ijuk pada masa impregnasi yang seragam selama 5 minit. Didapat bahwa kandungan lembapan (MC) gentian terimpregnasi berkurang dari 8.19% kepada 0.75-0.46% bagi gentian yang telah diimpregnasi dengan PF dan 0.87-0.44% bagi UP, manakala penyerapan air (WA) telah berkurang dari 116.82% kepada 61.64-22.52% bagi PF dan 63.49-23.31% bagi UP. Kekuatan tegangan meningkat dari 243.77 MPa kepada 251.39-297.67 MPa bagi gentian yang diimpregnasi dengan PF dan 287.84-344.71 MPa bagi UP. Kekakuan tegangan meningkat daripada 3.07 GPa kepada 3.1-3.98 GPa bagi gentian yang diimpregnasi dengan PF dan 3.15-3.98 GPa bagi UP, manakala pemanjangan pada takat putus bagi gentian yang diimpregnasi dengan PF menurun dari 25.16% kepada 17.66-6.26% dan kepada 24.24-19.05% untuk UP. Kekuatan tegangan dan pemanjangan pada takat putus gentian yang rendah bagi gentian yang diimpregnasi dengan PF telah menyebabkan keliatan gentiannya menjadi jauh lebih rendah (dari 48.51 MJ/m3 kepada 33.08-12.29 MJ/m3) berbanding dengan gentian yang diimpregnasi dengan UP (48.51 MJ/m3 kepada 57.56-45.21 MJ/m3). Peringkat ketiga kajian diteruskan dengan mengimpregnasi gentian dengan resin UP pada tekanan impregnasi 600 mmHg selama 5 minit. Kekuatan ricihan antara muka (IFSS), TGA dan FT-IR gentian telah diperolehi sebelum gentian tersebut digunakan untuk penguatan komposit dengan kandungan gentian 10, 20, 30, 40 dan 50%. Didapat bahwa proses impregnasi telah meningkatkan ikatan antara muka gentian-matrik sebanyak 72.46%. Serapan lembapan yang rendah bagi gentian terimpregnasi berbanding tak diimpregnasi telah dibuktikan secara kualitatif melalui TGA dan spektrum FT-IR. Secara keseluruhannya, komposit diperkuat gentian terimpegnasi menunjukkan sifat
tegangan dan kelenturan yang lebih baik berbanding tak diimpregnasi dan komposit-komposit dengan kandungan gentian 30% menunjukkan nilai yang maksimum. Diperhatikan juga bahawa MC, WA, pengembangan ketebalan (TS) dan kadar pengembangan arah bertentangan (LE) komposit diperkuat gentian terimpregnasi lebih rendah berbanding dengan tak diimpregnasi dan keupayaan menentang penyerapan lembapan (MEE) dan keupayaan menentang pengembangan (ASE) meningkat.
ACKNOWLEDGEMENTS

First and foremost, praise to Allah S.W.T for His mercy which has given me the opportunity to complete this research project. I would like to express my gratitude to my beloved father and mother, Hj. Ishak Bin Hj. Ab. Wahab and Hjh. Saodah Binti Hj. Lebai Harun and my family for their overwhelming support and blessing. I am deeply indebted to the chairman of supervisory committee, Associate Professor Dr. Zulkiflle Leman and to co-supervisors, Professor Ir. Dr. Mohd Sapuan Salit, Associate Professor Dr. Mohd Zaki Abd Rahman and Dr. Mohd Khairun Anwar Uuyup for their outstanding advices and assistance throughout the years. Special thanks to Mr. Mohd Zafri Mahdi, Mr. Ahmad Shaifudin Ismail, Mr. Ishak Mohd Yusof, Mr. Muhammad Wildan Ilyas Mohamed Ghazali, Mr. Tajul Ariffin Md. Tajuddin, Mr. Mohd Saiful Azuar Md. Isa and all staff from the Department of Mechanical and Manufacturing Engineering. I would also like to acknowledge Dr. Salmiah Ujang, Dr. Hamdan Husain, Mr. Baharudin, Mr. Nizam and all staff of the Forest Research Institute of Malaysia (FRIM) for providing facilities in impregnation process. I would also like to thank Mr. Sairizal Misri, Mr. Sahari Japar, Mr. Mohd Shukri Ibrahim, Mr. Mohd Yusoff Salleh, Mr. Mohd Zuhri Mohamed Yusoff, Mr. Muslim Haron, Mr. Ahmed Ali Ahmed Basheer, Mr. Khairul Azhar Mohammad, Mr. Umar Abdul Hanan, Mr. Mohd Fairuz Abd. Manab, Mr. Abu Hatim Ibrahim, Mr. Dandi Bacthiar, Mr. Hamim Izwan Hamdan, Mr. Mohd Uzair Rosli, Dr. Hambali Arep @ Ariff, Dr. Riza Wirawan, Dr. Januar Parlaungan Siregar, Dr. Mohamed Abd. Rahman, Dr. Agung Efriyo Hadi, Mrs. Yusriah Lazim, Miss Nurhaniza Mohamad, Miss Suraya Sulaiman, Mrs. Suriani Mat Juso, Mrs. Salwani Mohd Salleh, Mrs. Azlin Sha’ari, Mrs. Nurhanifawati Inai, Mrs. Mai Nursherida Syed Jalalulail and to everyone who has helped me in completing this research project.
I certify that a Thesis Examination Committee has met on 12 June 2012 to conduct the final examination of Mohamad Ridzwan Bin Ishak on his thesis entitled "Enhancement of physical properties of sugar palm (Arenga pinnata Merr.) fibre-reinforced unsaturated polyester composites via vacuum resin impregnation" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the degree of Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

Robiah Yunus, PhD
Professor
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Shamsuddin Sulaiman, PhD
Professor
Faculty of Engineering
Universiti Putra Malaysia
(Internal Examiner)

Khalina Abdan, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Internal Examiner)

Faiz Mohammad, PhD
Professor
Faculty of Science
Aligarh Muslim University
India
(External Examiner)

SEOW HENG FONG, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:

viii
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Zulkiflle Leman, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Mohd Sapuan Salit, PhD, P. Eng
Professor
Faculty of Engineering
Universiti Putra Malaysia
(Member)

Mohamad Zaki Ab. Rahman, PhD
Associate Professor
Centre of Foundation Studies for Agricultural Science
Universiti Putra Malaysia
(Member)

Mohd Khairun Anwar Uyup, PhD
Research Officer
Forest Products Division
Forest Research Institutue of Malaysia
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institutions.

MOHAMAD RIDZWAN BIN ISHAK

Date: 12 June 2012
TABLE OF CONTENTS

DEDICATION i
ABSTRACT ii
ABSTRAK iv
ACKNOWLEDGEMENTS vii
APPROVAL viii
DECLARATION x
LIST OF TABLES xiii
LIST OF FIGURES xiv
LIST OF ABBREVIATIONS xviii
LIST OF SYMBOLS xx

CHAPTER

1 INTRODUCTION 1

2 LITERATURE REVIEW
2.1 Introduction 10
2.2 Introduction to Sugar Palm Fibre 11
2.3 Literature Review of Sugar Palm Fibre Composites 13
 2.3.1 Sugar Palm Fibre 13
 2.3.2 Sugar Palm Fibre Composites 15
2.4 Treatment of Sugar Palm Fibre 19
2.5 Fibre-Matrix Interface and Fibre Pullout Test 21
2.6 Thermosetting Matrix 22
 2.6.1 Unsaturated Polyester 23
 2.6.2 Phenol Formaldehyde 25
2.7 Effects of Moisture on Lignocellulose Materials 26
2.8 Heterogeneity of Lignocellulose Materials 28
2.9 Dimensional Instability of Lignocellulose Materials 29
2.10 Determination the Dimensional Stability of Lignocellulose Materials 30
2.11 Property Enhancement of Natural Fibre Composites 31
 2.11.1 Fibre Treatment 32
2.12 Impregnation Process 35
2.13 Effects of Resin Impregnation on the Properties of Lignocellulose Materials 36
2.14 Durability of Composites 37
2.15 Thermal Properties 37
2.16 Summary of Literature Review 38

3 METHODOLOGY
3.1 Introduction 42
3.2 Preparation of Fibres and Matrices 44
3.3 Impregnation of the Fibres 46
3.4 Determination of Chemical Composition 49
3.5 Determination of Thermogravimetric Analysis (TGA) 53
3.6 Determination of Fourier Transform Infrared (FT-IR) Spectra 53
3.7 Determination of Interfacial Shear Strength (IFSS) 53
3.8 Fabrication of Composites 55
3.9 Determination of Physical Properties 57
3.10 Determination of Mechanical Properties 60
3.11 Morphological Observation 62
3.12 Method of Result Analysis 63

4 RESULTS AND DISCUSSIONS
4.1 Characterisation of Sugar Palm Fibre from Different Tree Heights
 4.1.1 Tensile Properties 65
 4.1.2 Chemical Composition 72
 4.1.3 Thermogravimetric Analysis (TGA) 80
 4.1.4 Fourier Transform Infrared (FT-IR) Spectra 86
4.2 Optimisation of Processing Parameter of PF and UP-Impregnated Sugar Palm Fibre
 4.2.1 Effect of Impregnation Time 89
 4.2.2 Effect of Impregnation Pressure 104
4.3 Properties of UP-Impregnated Sugar Palm Fibre
 4.3.1 Interfacial Shear Strength (IFSS) 125
 4.3.2 Thermogravimetric Analysis (TGA) 127
 4.3.3 Fourier Transform Infrared (FT-IR) Spectra 131
4.4 Mechanical and Physical Properties of UP-Impregnated Sugar Palm Fibre Reinforced Unsaturated Polyester Composites
 4.4.1 Mechanical Properties 133
 4.4.2 Physical Properties 142

5 CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH

REFERENCES 159
BIODATA OF STUDENT 178
LIST OF PUBLICATIONS 179
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Properties of Polyester Resin</td>
<td>24</td>
</tr>
<tr>
<td>2.2</td>
<td>Comparison of the Advantages and Disadvantages of Unsaturated Polyester</td>
<td>25</td>
</tr>
<tr>
<td>2.3</td>
<td>Summary of Previous Studies of Sugar Fibre and its Composites</td>
<td>39</td>
</tr>
<tr>
<td>4.1</td>
<td>Frequencies and their Assignments for FT-IR Spectra of Sugar Palm Fibres</td>
<td>88</td>
</tr>
<tr>
<td>4.2</td>
<td>IFSS of Control and UP-Impregnated Sugar Palm Fibres</td>
<td>125</td>
</tr>
<tr>
<td>4.3</td>
<td>WPG, SG, MC and WA of Control and Impregnated Sugar Palm Fibre</td>
<td>148</td>
</tr>
</tbody>
</table>