

UNIVERSITI PUTRA MALAYSIA

EQUILIBRIUM AND KINETIC STUDIES OF METALLIC IONS AND RESIDUAL OIL REMOVAL FROM PALM OIL MILL EFFLUENT USING NATURAL ZEOLITE

MOHAMMAD AMIN SHAVANDI

FK 2012 45

EQUILIBRIUM AND KINETIC STUDIES OF METALLIC IONS AND RESIDUAL OIL REMOVAL FROM PALM OIL MILL EFFLUENT USING NATURAL ZEOLITE

By

MOHAMMAD AMIN SHAVANDI

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirement for the Degree of Master of Science

August 2012

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the degree of Master of Science

EQUILIBRIUM AND KINETIC STUDIES OF METALLIC IONS AND RESIDUAL OIL REMOVAL FROM PALM OIL MILL EFFLUENT BY NATURAL ZEOLITE

By

MOHAMMAD AMIN SHAVANDI

August 2012

Chair: Mohd Halim Shah Ismail, PhD

Faculty: Engineering

The removal of heavy metals (Fe, Zn and Mn) and residual oil from palm oil mill effluent using natural zeolite was studied in this research. In order to evaluate the effectiveness of natural zeolite as a low cost and abundant adsorbent, different laboratory experiments were performed, including batch studies, desorption studies, equilibrium and kinetic tests, and column studies. Equilibrium studies show that, pH plays a major role in removal of both heavy metal and residual oil. Uptake of the tested heavy metals increased with pH and maximum removal was observed at pH 6.0, while maximum residual oil was removed at pH 3.0. Equilibrium data obtained from metal removal and oil removal followed the Langmuir and Freundlich isotherm models respectively while the kinetic data of both metal ions and oil removal were well described by the pseudo-second-order equation. The results obtained demonstrated that up to 70% of residual oil along with more than 50% of Zn(II) and Mn(II) and about 60% of Fe(III) could be removed by natural zeolite in the experiments. Column studies results also indicated that natural zeolite can be used for oil and heavy metal removal from flowing POME. The time of

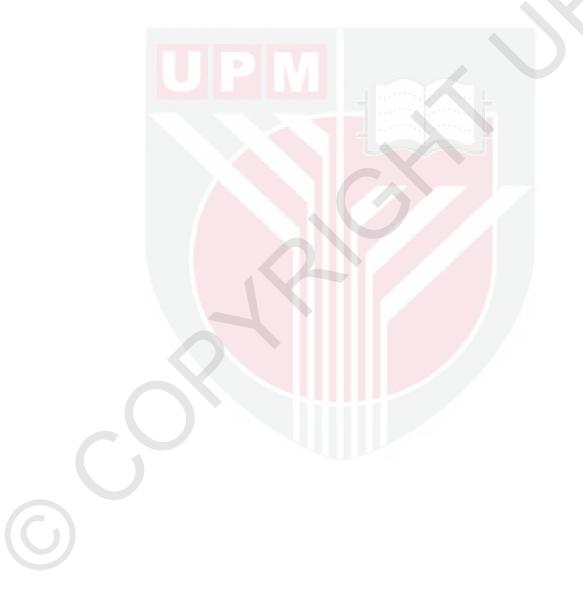
breakthrough increased with a higher bed depth and slower flow rate. The Bohart and Adams model and the bed depth service time model (BDST) were used to estimate the experimental data.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

KAJIAN KESEIMBANGAN DAN KINETIK ION-ION LOGAM DAN SISA MINYAK KAEDAH PENYINGKIRAN DARI EFLUEN KILANG MINYAK SAWIT MENGUNAKAN ZEOLIT SEMULAJADI

Oleh

MOHAMMAD AMIN SHAVANDI


Ogos 2012

Pengerusi: Mohd Halim Shah Ismail, PhD

Fakulti: Kejuruteraan

Penyingkiran logam berat (Fe, Zn dan Mn) dan sisa minyak daripada efluen kilang minyak sawit menggunakan zeolit semulajadi telah dikaji dalam kajian ini. Dalam usaha untuk menilai keberkesanan zeolit semulajadi sebagai bahan kos rendah dan mudah didapati, ujikaji makmal yang berbeza telah dijalankan, termasuk kajian kelompok, kajian penyahjerapan, ujian keseimbangan dan kinetik, dan kajian turus. Kajian keseimbangan menunjukkan bahawa, pH memainkan peranan utama dalam penyingkiran logam berat dan sisa minyak. Pengambilan logam berat diuji meningkat dengan pH dan penyingkiran maksimum diperhatikan pada pH 6.0, manakala sisa minyak maksimum disingkirkan adalah pada pH 3.0. Data keseimbangan yang diperolehi dari penyingkiran logam dan penyingkiran minyak masing-masing berdasarkan model isoterma Langmuir dan Freundlich manakala data kinetik penyingkiran logam dan minyak telah dihuraikan oleh persamaan pseudo peringkat kedua. Keputusan yang diperolehi menunjukkan sehingga 70% daripada sisa minyak serta lebih daripada 50% Zn (II) dan Mn (II) dan kira-kira 60% daripada Fe (III) boleh disingkirkan mengunakan zeolit semulajadi. Selain itu, keputusan

kajian turus juga menunjukkan bahawa zeolit semulajadi boleh digunakan untuk penyingkiran minyak dan logam berat daripada POME yang mengalir. Masa penemuan meningkat dengan kedalaman dasar yang lebih tinggi dan kadar aliran yang lebih perlahan. Model Bohart dan Adams dan model dasar kedalaman masa servis (BDST) telah digunakan untuk menganggarkan data eksperimen.

ACKNOWLEDGMENTS

The author would like to express sincere appreciation to Associate Professor Mohd Halim Shah Ismail for his support, critics, guidance, and encouragement throughout the work on this thesis. Special thanks to Associate Professor Norhafizah Abdullah for serving as a co-supervisor. I would like to express my eternal gratitude to my loving family for all the love, patience, help and prayers. I will always be grateful for the constant love and encouragement they gave me along the way. Most of all, I thank God for everything. I certify that a Thesis Examination Committee has met on 29 August 2012 to conduct the final examination of Mohammad Amin Shavandi on his thesis entitled "Removal of Metallic Ions and Residual Oil from Palm Oil Mill Effluent by Natural Zeolite" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the degree of Master of Science.

Members of the Thesis Examination Committee were as follows:

Suraya Abdul Rashid, PhD

Associate Professor Faculty of Engineering Universiti Putra Malaysia (Chairman)

Luqman Chuah Abdullah, PhD

Professor Faculty of Engineering Universiti Putra Malaysia (Internal Examiner)

Salmiaton Ali, PhD

Associate Professor Faculty of Engineering Universiti Putra Malaysia (Internal Examiner)

Mohd. Ghazali Mohd Nawawi, PhD

Associate Professor Faculty of Chemical Engineering Universiti Teknologi Malaysia (External Examiner)

SEOW HENG FONG, PhD

Professor and Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date:

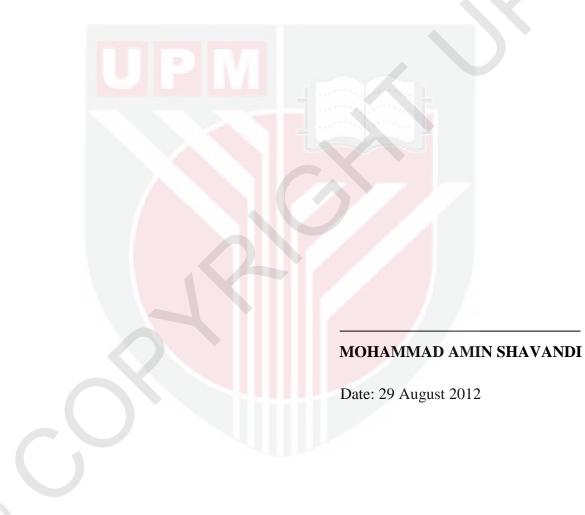
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Mohd Halim Shah Ismail, PhD

Associate Professor Faculty of Engineering Universiti Putra Malaysia (Chairman)

Nurhafizah Abdullah, PhD

Associate Professor Faculty of Engineering Universiti Putra Malaysia (Member)


BUJANG BIN KIM HUAT, PhD

Professor and Dean School of Graduate Studies Universiti Putra Malaysia

Date:

DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institution.

TABLE OF CONTENTS

			Page
ABSTRA	CT		ii
ABSTRAI			iv
ACKNOW		EMENTS	vi
APPROV			vii
DECLAR	ATION		ix
LIST OF	TABLES	6	xiv
LIST OF I	FIGURE	S	xvi
LIST OF	ABBREV	VIATIONS	xviii
CHAPTE	R		
1		TRODUCTION	1
	1.1	Palm Oil Industry in Malaysia	1
	1.2	Palm Oil Extraction Process	3
	1.3	Wastewater pollution	4
	1.4	The Environmental impacts of residual oil and metallic ions	5
		1.4.1 Residual oil	5
		1.4.2 Heavy metal	5
	1.5	Problem Statement	6
	1.6	Objectives	7
	1.7	Scope	8
	1.7	Scope	0
			0
2		TERATURE REVIEW	9
	2.1	Introduction	9
	2.2	Properties of POME	9
	2.3	Current Palm oil Mill Effluent Treatment Technologies	11
		2.3.1 Pretreatment	11
		2.3.2 Primary Treatment (Biological process)	12
	2.4	Critical limits of Effluent Discharge	13
	2.5	Heavy Metals in POME	14
	2.6	Health and Environmental Effects of Heavy Metals	15
		2.6.1 Health and Environmental Effects of Manganese	17
		2.6.2 Health and Environment Effects of Zinc	18

	2.6.3 Health and Environmental Effects of Iron	18
2.7	Common Treatment Methods for Heavy Metal Removal	19
2.8	Adsorption	21
	2.8.1 Mechanism of Adsorption	21
	2.8.2 Properties of the Adsorbent	21
2.9	Natural Zeolite	21
2.10	Formation of Natural Zeolites	23
2.11	Application of Natural Zeolites	23
	2.11.1 Natural Zeolites as Adsorbent	23
	2.11.2 Natural Zeolites as Ion Exchanger	24
	2.11.3 Applications of Zeolites in Catalysis	25
2.12	Using Natural Zeolite to Treat Palm Oil Mill Effluent	26
2.13	Other Adsorbents for Heavy Metal Removal	27
	2.13.1 Biomaterial Sorbents	27
	2.13.2 Industrial Waste	28
2.14	Other Adsorbents for Oil Removal	29
2.15	Adsorption Equilibrium	31
2.16	Adsorption Isotherms	31
	2.16.1 Langmuir Isotherm	31
	2.16.2 Freundlich Isotherm	32
2.17	Absorption Models	33
	2.17.1 Pseudo First Order Kinetic Model	34
	2.17.2 Pseudo Second Order Kinetic Model	34
	2.17.3 Intraparticle Diffusion Model	35
2.18	Dynamic Studies	36
	2.18.1 Breakthrough Curve	36
	2.18.2 Calculation of Experimental Parameters of Breakthrough Curve	38
2.19	Modeling of Fixed Bed Columns	39
	2.19.1 Bohart-Adams Model	39
	2.19.2 Bed Depth Service Model	40
2.20	Conclusion	42
3 M	ATERIALS AND METHODS	43
3.1	Materials	43
	3.1.1 Preparation of Adsorbent	43
	3.1.2 Characterization of Natural Zeolite	43

- 3.1.2 Characterizat3.1.3 Wastewater
 - 3.1.3
 Wastewater
 44

 3.1.4
 Chemicals
 44

	3.1.5 Equipment	45
3.2	Determination of Point of Zero Charge	45
3.3	Batch Sorption Studies for Removal of Heavy Metal and Residual Oil	45
	3.3.1 Effect of pH	46
	3.3.2 Effect of Adsorbent Dose	46
	3.3.3 Effect of Stirring Rate	46
	3.3.4 Effect of Contact Time	46
3.4	Analytical Techniques	50
	3.4.1 Determination of Heavy Metal	50
	3.4.2 Determination of Residual Oil Concentration	50
3.5	Calculation of Removal Percentage and Adsorption Capacity	51
3.6	Desorption Study	52
3.7	Adsorption Equilibrium, Isotherm and Kinetic Studies	52
3.8	Kinetic Models Validation	53
3.9	Column Studies	53
	3.9.1 Effect of Flow Rate	54
	3.9.2 Effect of Bed Height	55
3.10	Modeling of Fixed Bed Column	55
4 R E	SULTS AND DISCUSSION	56
	paracterization of the Adsorbent	56
4.2	Batch Sorption Studies of Metallic Ions	60
	4.2.1 Effect of pH	60
	4.2.2 Effect of Adsorbent Dosage	61
	4.2.3 Effect of Contact Time	63
	4.2.4 Effect of Stirring Rate	65
	4.2.5 Desorption Study	67
	4.2.6 Adsorption Isotherm	69
	4.2.7 Sorption Kinetics	71
	4.2.8 Validation of the Kinetic Models	75
	4.2.9 Distribution Coefficient	75
	4.2.10 Comparative Study	76
4.3	Removal of Residual Oil Content	78
	4.3.1 Effect of pH	78
	4.3.2 Effect of Contact Time	79
	4.3.3 Effect of Stirring Rate	80
	4.3.4 Effect of Adsorbent Dosage	81
	4.3.5 Adsorption Isotherm	82

	4.3.6	Adsorption Kinetics	83
	4.3.7	Kinetic Models Validation	86
	4.3.8	Characterization of the Adsorbent	86
4.4	Column	Studies	88
	4.4.1	Effect of Flow Rate	88
	4.4.2	Effect of Bed Depth	92
	4.4.3	Modeling of Breakthrough Curve	94
	4.4.4	Validity of the Models	98
4.5	Conclu	sion	101
5 C	ONCLU	SIONS AND RECOMMENDATIONS	102
REFERENCES			105
APPENDICES			115
BIODATA OF S 7	UDEN T		120
LIST OF PUBLIC	CATION	S	121

 \bigcirc