PREVALENCE AND MOLECULAR CHARACTERIZATION OF VIBRIO PARAHAEMLYTICUS ISOLATED FROM CULTURED TIGER PRAWNS (PENAEUS MONODON) FROM MALACCA

By

TUAN ZAINAZOR TUAN CHILEK

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirement for the Degree of Master Science

June 2006
DEDICATION

This piece of work is dedicated to my lovely wife (Nani), who has always been by my side and given me the encouragement and support that carries me through my study period. Not forgetting my daughter (Fifi) and parents for their endless love to me.
Abstract of thesis presented to Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

PREVALENCE AND MOLECULAR CHARACTERIZATION OF *VIBRIO PARAHAEOMOLYTICUS* ISOLATED FROM CULTURED TIGER PRAWNS (*PENAEUS MONODON*) FROM MALACCA

By

TUAN ZAINAZOR TUAN CHILEK

June 2006

Chairman : Professor Son Radu, PhD

Faculty : Food Science and Technology

Food industries play an important role and contribute to economic activities in many countries worldwide. However, the frequencies of outbreak of food borne cases reported around the world related to this industry posed a significant public health issue. All countries including Malaysia have already developed their own food laws and food regulations to protect public health and to prevent food borne outbreaks. However, despite the strict controlled at every stages of food production, from farm to table, food borne outbreaks still occur. Tiger Prawn (*Penaeus monodon*) is synonymous with Malaysian farming industries. *Vibrio parahaemolyticus* is one of the major seafood-borne gastroenteritis-causing bacteria, frequently associated with consumption of improperly cooked seafood. Cultured tiger prawn farm at LKIM Merlimau, Malacca was identified for sampling in this study. The duration of sampling followed the whole cycle of tiger prawn cultivation
(until harvesting stage) involving two cycles (from 29 September 2003 to 29 April 2004). A total of sixty samples of cultured tiger prawn (25g/sample) and pond’s water (25ml/sample) from both cycles were obtained. In our study, we found that most samples acquired were positive for *V. parahaemolyticus* (81.7%) when examined with specific-PCR (*toxR*). The presence of virulence gene, the *tdh* and/or *trh* genes have been considered the major virulence factor of the bacterium. In our study, none *tdh* gene was detected in all isolates. However, *trh* gene was detected in twenty-three isolates (38.3%) for both prawn and water samples. Temperature, pH and salinity play as an important factors in every stage of culturing tiger prawns. The optimum condition for those factors (temperature; 37°C, pH; 7.8-8.6, salinity; 3%) were promoted the growth of *V. parahaemolyticus*. RAPD-PCR was used to generate polymorphic genomic fingerprints to determine of genetic relatedness among *V. parahaemolyticus* isolates. Two primers (OPAR3; 5’-CTTGAGTGGA-3’ and OPAR8; 5’-GAGATGACGA-3’), out of the ten primers showed the best results and were selected for further study. Primer OPAR3 and OPAR8 produced 1 to 8 bands and 1 to 9 bands, respectively with amplified products ranging from 0.25 to 10.0 kilo base pairs. Seven groups of antibiotics namely, the Aminoglycosides, β-lactams, Cephalosporins, Glycopeptides, Macrolides, Quinolones, Tetracyclines and others were tested against all *V. parahaemolyticus* isolates. They were highly resistant to ampicillin (100%), penicillin (100%), cefuroxim (100%), teicoplanin (100%), erythromycin (98%), rifampicin (98%), trimethoprim
(98%) and streptomycin (96%), but sensitive to quinolones and tetracyclines groups of antibiotic. The antibiotic resistance profile patterns can be classified into four groups. In this study, MAR index range was between 0.40 - 0.60. Tiger prawn is a potential source of *V. parahaemolyticus*.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

PEMANTAUAN DAN PENCIRIAN MOLEKULAR BAGI VIBRIO PARAHAEOMOLYTICUS YANG DIPENCILKAN DARIPADA UDANG HARIMAU (PENAEUS MONODON) YANG DITERNAK DI NEGERI MELAKA

Oleh

TUAN ZAINAZOR TUAN CHILEK

Jun 2006

Pengerusi : Profesor Son Radu, PhD
Fakulti : Sains dan Teknologi Makanan

Industri makanan memainkan peranan yang penting dan menyumbang kepada kegiatan ekonomi bagi kebanyakan negara. Pada masa kini, kejadian wabak yang berpunca daripada makanan sering dilaporkan di seluruh dunia yang melibatkan industri ini. Semua negara termasuk Malaysia, mereka telah membangunkan sistem undang-undang makanan dan peraturan-peraturan makanan mereka sendiri bagi melindungi kesihatan awam dan membenteras kejadian wabak. Walaupun kawalan ketat ke atas setiap peringkat pengeluaran makanan, dari ladang kepada pengguna dijalankan, namun ia tetap terjadi. Udang harimau berkait rapat dengan industri penternakan di Malaysia. Vibrio parahaemolyticus merupakan faktor utama kejadian keracunan makanan laut yang kebiasaannya berkait rapat dengan pengambilan makanan laut yang tidak dimasak sepenuhnya.
Ladang ternakan udang harimau di Negeri Melaka telah dipilih bagi kajian ini. Tempoh pensampelan melibatkan dua kitaran penternakan udang harimau iaitu bermula dari 29 hb. September 2003 sehingga 29 hb. April 2004. Sebanyak 60 sampel termasuk udang harimau (25g/sampel) dan air kolam ternakan (25ml/sampel) telah diambil sepanjang tempoh tersebut. Di dalam kajian ini didapati 81.7% daripada sampel menunjukan kehadiran *V. parahaemolyticus* apabila dianalisa menggunakan kaedah PCR (*toxR*). Kehadiran genetik yang berbahaya seperti *tdh* dan *trh* menunjukan bakteria tersebut adalah patogenik. Genetik *tdh* tidak dikesan di dalam semua pencilan bakteria bagi kajian ini. Walaubagaimanapun, genetik *trh* dikesan di dalam 23 pencilan (38.3%) yang diperolehi daripada sampel udang dan air. Suhu, pH dan kandungan garam merupakan faktor-faktor yang penting yang mempengaruhi penternakan udang harimau bagi setiap peringkat penternakan. Keadaan optimum bagi faktor tersebut (suhu; 37°C, pH; 7.8-8.6, kandungan garam; 3%) akan membantu pertumbuhan *V. parahaemolyticus*. Kaedah RAPD-PCR telah digunakan bagi mendapatkan perkaitan genetik di antara pencilan *V. parahaemolyticus* yang diperolehi. Daripada 10 primer yang disaring, 2 primer (OPAR3; 5’-CTTGAGTGGGA-3’ dan OPAR8; 5’-GAGATGACGA-3’) yang memberikan keputusan terbaik telah dipilih untuk kajian seterusnya. Primer OPAR3 dan OPAR8 masing-masing menghasilkan 1 hingga 8 band dan 1 hingga 9 band dengan saiz di antara 0.25 hingga 10.0 kb. Tujuh kumpulan antibiotik seperti Aminoglycosides, β-lactams, Cephalosporins, Glycopeptides, Macrolides,
Quinolones, Tetracyclines dan lain-lain telah digunakan. Pencilan *V. parahaemolyticus* yang diperolehi daripada ladang ternakan udang menunjukan kerintangan yang tinggi ke atas ampicillin (100%), penicillin (100%), cefuroxim (100%), teicoplanin (100%), erythromycin (98%), rifampicin (98%), trimethoprim (98%) dan streptomycin (96%) tetapi sensitif kepada kumpulan antibiotik seperti quinolones dan tetracyclines. Melalui kajian ini, MAR indeks yang diperolehi adalah di antara 0.40 hingga 0.60. Udang harimau mempunyai potensi sebagai sumber bagi *V. parahaemolyticus*.
ACKNOWLEDGEMENTS

My deepest gratitude goes to my supervisor, Professor Dr. Son Radu for his dedicated effort, guidance and encouragement throughout the research. My appreciation and gratitude also goes to my co-supervisor, Associate Professor Dr. Suhami Napis and Dr. Zunita Zakaria for their patience and consistent encouragement.

Sincere gratitude is also extended to all the staff of Faculty of Food Science and Technology, Universiti Putra Malaysia and National Public Health Laboratory, Ministry of Health, who helped towards the success of this project. Special thanks to Public Service Department who gave the scholarship for me.

Not forgetting my family mum and my mother-in-law who share much of my joy and sorrow. Words could not express my gratitude to all of you.

Also, special thanks to my friends (Tosiah, Zawiyah, Jurin, Lesly, Tung, Kqueen, Zulkifli, Yousr, Patrick, Yuli Haryani, Marlina, Rozila, Maslihana, Chandrika, Azura, Adzim and Norhayati). Last but not least, my gratitude goes to Mr. Jamal Khair, Mr. Chin Cheow Keat and Cik Laila Rabaah (Food Safety and Quality Division, Ministry of Health, Malaysia) for their help and support.
I certify that an Examination Committee has met on 19th June 2006 to conduct the final examination of Tuan Zainazor Bin Tuan Chilek on his Master of Science thesis entitled “Prevalence and Molecular Characterization of *Vibrio parahaemolyticus* Isolated from Cultured Tiger Prawn (*Penaeus monodon*) from Malacca” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Nazamid Saari, PhD
Associate Professor
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Chairman)

Zaiton Hassan, PhD
Associate Professor
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Internal Examiner)

Fatimah Abu Bakar, PhD
Associate Professor
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Internal Examiner)

Giovanni Normanno, PhD
Associate Professor
Faculty of Veterinary Medicine
University of Bari, Italy
(External Examiner)

HASANAH MOHD. GHAZALI, PhD
Professor / Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee are as follow:

Son Radu, PhD
Professor
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Chairman)

Suhaimi Napis, PhD
Associate Professor
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Member)

Zunita Zakaria, PhD
Lecturer
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Member)

AINI IDERIS, PhD
Professor / Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

TUAN ZAINAZOR TUAN CHILEK

Date:
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>ix</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>x</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xviii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxi</td>
</tr>
</tbody>
</table>

CHAPTER

I INTRODUCTION
Objectives of the study 6

II LITERATURE REVIEW
World Aquaculture Production 7
Prawn Industry in Malaysia 8
Tiger Prawn Farming 15
Public Health Impact of Vibrios 19
Taxonomy 24
Ecology and Specific Properties of V. parahaemolyticus 25
Serology and Epidemiology of V. parahaemolyticus 27
Disease Related to V. parahaemolyticus 30
Control of V. parahaemolyticus in Food 31
Detection and Enumeration of V. parahaemolyticus in Food 33
Identification of V. parahaemolyticus 35
Antibiotic Susceptibility Pattern 37
Polymerase Chain Reaction
 Specific PCR 39
 Random Amplification Polymorphic DNA (RAPD) 42
III ENUMERATION AND IDENTIFICATION OF V. PARAHAEOMOLYTICUS FROM CULTURED TIGER PRAWN IN MALACCA

Introduction 47
Objectives of the Study 48
Materials and Methods 48
 Sample Collection 48
 Enumeration Procedures 50
 Identification Procedures 52
 Monitoring on Temperature, pH and Salinity 52
Results 53
Discussion 61

IV DETECTION OF TOXR, TDH AND TRH GENES USING PCR

Introduction 68
Objectives of the Study 69
Materials and Methods 69
 Bacterial Isolates and DNA Preparation 69
 DNA Primers 71
 DNA Ladder 72
 Methods of Specific PCR 72
Results 75
Discussion 82

V RANDOM AMPLIFICATION OF POLYMORPHIC DNA (RAPD) OF V. PARAHAEOMOLYTICUS

Introduction 87
Objectives of the Study 88
Materials and Methods of RAPD 88
 Bacterial Isolates and DNA Preparation 88
 DNA Primers 89
 DNA Ladder 90
 Methods of RAPD-PCR 91
Results 92
Discussion 104
VI ANTIBIOTIC SUSCEPTIBILITY TESTING OF V. PARAHAEOMOLYTICUS FROM CULTURED TIGER PRAWN IN MALACCA

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>109</td>
</tr>
<tr>
<td>Objectives of the Study</td>
<td>111</td>
</tr>
<tr>
<td>Materials and Methods</td>
<td>112</td>
</tr>
<tr>
<td>Bacterial Strains, Media and Propagation</td>
<td>112</td>
</tr>
<tr>
<td>Antibiotic Susceptibility</td>
<td>112</td>
</tr>
<tr>
<td>A Multiple Antibiotic Resistances (MAR)</td>
<td>113</td>
</tr>
<tr>
<td>Indexing of Isolates</td>
<td></td>
</tr>
<tr>
<td>Results</td>
<td>114</td>
</tr>
<tr>
<td>Discussion</td>
<td>119</td>
</tr>
</tbody>
</table>

VII CONCLUSION

REFERENCES 130

BIODATA OF THE AUTHOR 146