PILOT-SCALE PRODUCTION OF *LACTOBACILLUS RHAMNOSUS* ATCC 7469

By

LIEW SIEW LING

Thesis submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

December 2004

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy

PILOT-SCALE PRODUCTION OF *LACTOBACILLUS RHAMNOSUS* ATCC 7469

By

LIEW SIEW LING

December 2004

Chairman: Professor Arbakariya Ariff, Ph.D.

Faculty: Institute of Bioscience

The present study was undertaken in view of the demand for probiotic products as a result of health awareness in consumers and the lack of information pertaining to industrial probiotic production processes. Response surface methodology (RSM) was used to optimize the culture medium for the growth of a probiotic bacterium, *Lactobacillus rhamnosus* ATCC 7469. The factors studied were yeast extract, glucose, vitamins concentrations and initial culture pH. A polynomial regression model with cubic and quartic terms was used for analysis of the experimental data. RSM was found to be effective in developing an analysis model, finding the optimum point of the factors and assessing the effects of the factors. It was found that the effects involving yeast extract, glucose, vitamins and pH on the growth of *L. rhamnosus* were significant, and the strongest effect was given by the yeast extract concentration. Estimated optimum conditions of the factors for the growth of *L. rhamnosus* were as follows : pH = 6.9; vitamin solution = 1.28% (v/v); glucose = 5.01% (w/v) and yeast extract = 6.0% (w/v).

Further improvement of cell production was made by using a process optimization approach. The fermentation parameters investigated were aeration, mixing, pH, inoculum size and temperature. Cell production and viability were greatly influenced by the culture pH and temperature compared to other parameters such as agitation speed. The optimal culture conditions for the cultivation of *L. rhamnosus* in the 2-L stirred tank fermenter were as follows : mixing speed, 0.69 ms⁻¹; pH, 6.9; temperature, 37°C and inoculum size of 5% (v/v) in facultative condition. Under this condition, final cell viability obtained was 1.61 x 10^{10} CFU mL⁻¹, viable cell yield and productivity were 3.20 x 10^{11} CFU g_{glucose}⁻¹ and 1.33 x 10^9 CFU mL⁻¹ h⁻¹, respectively.

Unstructured models based on Monod and Luedeking-Piret equations were developed and found to be suitable to describe the cell growth, lactic acid production and substrate consumption by *L. rhamnosus* in batch cultivation in a shake flask, 2-L, 10-L and 100-L stirred tank fermenters. Lactic acid production was a growth-associated and non-growth-associated (mixed) process. Scaling-up on the basis of constant impeller tip speed resulted in increasing mixing time as fermenter working volumes increased, but the mixing times were still within the critical acceptable range as fermentation performance was not significantly affected.

Continuous cultivation was used in an attempt to further improve biomass production of *L. rhamnosus*. The maximum specific growth rate, μ_{max} , and the Monod cell growth saturation coefficient, K_s , were estimated at 0.4 h⁻¹ and 0.25 g L⁻¹. Maximum cell viability (1.29 x 10¹⁰ CFU mL⁻¹) was achieved in the dilution rate (D) range of D = 0.28 h⁻¹ to 0.35 h⁻¹, while both maximum viable cell yield and productivity were achieved at $D = 0.35 h^{-1}$. Continuous cultivation of *L. rhamnosus* at $D = 0.35 h^{-1}$ gave 267% improvement in viable cell count productivity as compared to batch cultivations. Results obtained from exponentially fed-batch cultivation of *L. rhamnosus* at a $D = 0.4 h^{-1}$ indicated that this mode of cultivation might be a good alternative for *L. rhamnosus* production as higher cell concentration and lower lactic acid production could be achieved when compared to batch and continuous cultivations.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

PENGHASILAN *LACTOBACILLUS RHAMNOSUS* ATCC 7469 SECARA SKALA BERPANDU

Oleh

LIEW SIEW LING

Disember 2004

Pengerusi: Profesor Arbakariya Ariff, Ph.D.

Fakulti: Institut Biosains

Kajian ini telah dijalankan memandang permintaan yang semakin meningkat bagi produk probiotik akibat kesedaran kesihatan di kalangan konsumer serta kekurangan maklumat yang berkaitan dengan proses penghasilan probiotik secara industri. Kaedah Respons Permukaan (KRP) telah digunakan untuk mengoptimumkan medium kultur bagi pertumbuhan bakterium probiotik, *Lactobacillus rhamnosus* ATCC 7469. Faktor-faktor medium yang dikaji ialah jumlah ekstrak yis, glukosa, kepekatan vitamin dan pH permulaan medium kultur. Model regresi polinomial dengan sebutan kubik dan kuartik digunakan bagi analisis data ekperimen. KRP didapati berkesan untuk memperkembangkan model analisis, menentukan titik optimum bagi faktor-faktor yang dikaji serta menilai kesan-kesan factor-faktor berkenaan. Jumlah ekstrak yis, glukosa, vitamin dan pH medium kultur didapati memainkan peranan yang signifikan dalam pertumbuhan *L. rhamnosus*, dan ekstrak yis memainkan peranan yang paling ketara. Keadaan optimum faktor-faktor berkenaan bagi pertumbuhan *L. rhamnosus* adalah seperti berikut : pH = 6.9; larutan vitamin = 1.28% (v/v); glukosa = 5.01% (w/v) and ekstrak yis = 6.0% (w/v).

Penghasilan sel seterusnya dipertingkatkan dengan menggunakan pendekatan pengoptimuman proses. Parameter fermentasi yang dikaji adalah keadaan pengudaraan, pengadukan, pH, saiz inokulum dan suhu. pH dan suhu kultur mempunyai pengaruh yang lebih kuat ke atas penghasilan sel berbanding dengan parameter lain seperti pengadukan. Keadaan kultur yang optimum bagi penghasilan sel *L. rhamnosus* dalam fermenter berpengaduk 2 L adalah seperti berikut : kelajuan pengaduk, 0.69 ms⁻¹; pH, 6.9; suhu, 37°C and saiz inokulum 5% (v/v) dalam keadaan fakultatif. Di bawah keadaan tersebut, bilangan sel hidup yang terhasil adalah 1.61 x 10^{10} CFU mL⁻¹ serta penghasilan dan produktiviti sel hidup adalah masing-masing 3.20×10^{11} CFU g_{glukosa}⁻¹ and 1.33×10^{9} CFU mL⁻¹ j⁻¹.

Model tidak berstruktur yang berdasarkan persamaan-persamaan Monod and Luedeking-Piret telah diperkembangkan dan didapati sesuai untuk menerangkan pertumbuhan sel, penghasilan asid laktik dan penggunaan substrat oleh *L. rhamnosus* dalam sistem sesekelompok di dalam kelalang bergoncang dan fermenter berpengaduk bersaiz 2 L, 10 L and 100 L. Penghasilan asid laktik merupakan proses pertumbuhan berkait dan pertumbuhan tidak berkait (proses bercampur). Peningkatan skala berdasarkan halaju hujung pengaduk yang tetap telah menyebabkan pertambahan masa pengadukan dalam saiz fermenter yang semakin besar, tetapi masa pengadukan masih dapat dikekalkan dalam julat kritikal kerana prestasi fermentasi didapati tidak terjejas.

Fermentasi suapan selanjar telah digunakan untuk meningkatkan lagi penghasilan sel *L. rhamnosus*. Kadar pertumbuhan spesifik maksimum, μ_{maks} , serta koeffisien ketepuan pertumbuhan sel Monod, K_s , telah masing-masing dikira sebagai 0.4 j⁻¹ and

 0.25 g L^{-1} . Bilangan sel hidup yang maksimum (1.29 x $10^{10} \text{ CFU mL}^{-1}$) diperolehi dalam julat kadar dilusi (D), D = 0.28 j^{-1} hingga 0.35 j^{-1} , manakala penghasilan dan produktiviti sel hidup maksimum dicapai pada D = 0.35 j^{-1} . Fermentasi suapan selanjar *L. rhamnosus* pada D = 0.35 j^{-1} menghasilkan peningkatan sebanyak 267% dalam produktiviti sel hidup jika dibandingkan dengan fermentasi sesekelompok. Keputusan yang diperolehi daripada fermentasi suapan sesekelompok secara eksponen pada D = 0.4 j^{-1} menunjukkan bahawa kaedah fermentasi ini mungkin merupakan pilihan baik bagi penghasilan sel *L. rhamnosus* kerana bilangan sel yang lebih tinggi serta kepekatan asid laktik yang lebih rendah dapat diperolehi jika dibandingkan dengan fermentasi sesekelompok dan fermentasi suapan selanjar.

ACKNOWLEDGEMENTS

I wish to express my appreciation and gratitude to my supervisor, Professor Dr. Arbakariya Ariff for his supervision, constructive suggestions and immense amount of guidance throughout this study. Thanks are extended to the members of my supervisory committee, Professor Dr. Ho Yin Wan and Dr. Hirzun Mohd Yusof for their guidance during this study. Thanks also to Universiti Kebangsaan Malaysia for the staff scholarship offered to me. I am grateful for the assistance and cooperation shown by fellow students at the Fermentation Technology Unit, Institute of Bioscience, Universiti Putra Malaysia, during the period of this study.

I wish to convey my gratitude to my parents for their encouragement and moral support during the course of my study. And last but certainly not least, I wish to express my deep gratitude and heartfelt appreciation to my husband for his immense support, understanding and sacrifices that have made the task of completing this project possible.

I certify that an Examination Committee met on 20 Dec 2004 to conduct the final examination of Liew Siew Ling on her Doctor of Philosophy thesis entitled "Pilot-scale production of *Lactobacillus rhamnosus* (ATCC 7469)" in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Raha Abdul Rahim, Ph.D.

Associate Professor Faculty of Food Science and Biotechnology Universiti Putra Malaysia (Chairman)

Mohd. Yazid Abdul Manaf, Ph.D.

Professor Faculty of Food Science and Biotechnology Universiti Putra Malaysia (Member)

Abdul Manaf Ali, Ph.D.

Professor Faculty of Food Science and Biotechnology Universiti Putra Malaysia (Member)

Mohamad Roji bin Sarmidi, Ph.D.

Professor Faculty of Chemical and Natural Resources Engineering Universiti Teknologi Malaysia (Independent Examiner)

> **GULAM RUSUL RAHMAT ALI, Ph.D.** Professor/Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date :

This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee are as follows :

Arbakariya Ariff, Ph.D.

Professor Institute of Bioscience Universiti Putra Malaysia (Chairman)

Ho Yin Wan, Ph.D. Professor Institute of Bioscience

Universiti Putra Malaysia (Member)

Hirzun Mohd. Yusof, Ph.D.

Manager-Bioprocessing Technology Sime Darby Technology Centre Sdn. Bhd. (Member)

AINI IDERIS, Ph.D.

Professor, Dean School of Graduate Studies Universiti Putra Malaysia

Date :

DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

LIEW SIEW LING

Date :

TABLE OF CONTENTS

2.10	Conordaning reentariks	51
GEN	VERAL MATERIALS AND METHODS	56
3.1	Microorganisms	56
3.2	Inoculum Preparation and Medium Composition	57

CHAPTE	R

ABSTRACT

ABSTRAK

ACKNOWLEDGEMENTS

LIST OF ABBREVIATIONS

APPROVAL SHEETS

LIST OF TABLES

LIST OF FIGURES

DECLARATION FORM

1	INTRODUCTION	1
2	LITERATURE REVIEW	7
	2.1 Probiotics	7
	2.2 Scientific Basis of Functionality of Probiotics	11
	2.3 Flora of the Human Gastrointestinal Tract	12
	2.3.1 Microflora of Different Regions in the Gastrointestinal Tract	13
	2.3.2 The Bacterial Flora in Different Age Groups	16
	2.3.3 The Role of Normal Microflora	17
	2.3.4 Abnormal Gastrointestinal Flora in Humans	18
	2.4 Lactic Acid Bacteria	19
	2.4.1 Lactobacillus	23
	2.4.2 Lactobacillus rhamnosus	24
	2.4.3 Bifidobacterium	25
	2.5 The Role of Lactic Acid Bacteria in Human Health	26
	2.6 Role of Lactic Acid Bacteria in Food Preservation	31
	and Production	
	2.7 Safety of Probiotics	36
	2.8 Requirements of Probiotic Strains	39
	2.9 Large-scale Commercial Production of Probiotic Bacteria	41
	2.9.1 Unit Operation and Process Flow	41
	2.9.2 Medium Optimization	43
	2.9.3 Fermenter Cultivation	45
	2.9.4 Downstream Processing	49
	2.10 Concluding Remarks	54
3	GENERAL MATERIALS AND METHODS	56
	3.1 Microorganisms	56
	3.2 Inoculum Preparation and Medium Composition	57
	3.3 Experimental Plan	57

ii

v

viii

ix

xi

xvi

xix

xxii

3.4	Ferme	nter	59
3.5	Steriliz	zation of Fermenter	66
3.6	Analy	tical Procedures	68
	3.6.1	Viable Cell Counts	68
	3.6.2	Optical Density	68
	3.6.3	Dry Cell Weight Determination	69
	3.6.4	Determination of Glucose, Lactic Acid and	69
		Ethanol	
	3.6.5	Determination of Organic Acids	69
	3.6.6	Determination of Total Nitrogen	70
	3.6.7	Broth Viscosity Determination	70
ОРТ	IMIZIN	G MEDIUM COMPOSITION FOR THE	72
GRC	OWTH C	OF LACTOBACILLUS RHAMNOSUS USING	
RES	PONSE	SURFACE METHODOLOGY	
4.1	Introd	uction	72
4.2	Materi	ials and Methods	73
	4.2.1	Microorganisms	73
	4.2.2	Medium Composition and Cultivation	74
		Experiments	
	4.2.3	Analytical Techniques	75
	4.2.4	Experimental Design and Statistical	76
4.3	Result	s and Discussion	78
	4.3.1	Mixed-culture experiments	78
	4.3.2	Developing a Regression Model	81
	4.3.3	Finding the Optimum Point of the Factors	85
	4.3.4	Assessing Factor Effects with the Partial-	86
	135	Effects Flots Three Dimensional Response Surface Plots	88
	4.3.3	Validating the Optimum Point of the	00 80
	4.3.0	Factors	09
11	Conc	Jusions	0/
4.4	Conc	iusions	94
ENH	IANCE	MENT OF GROWTH OF LACTOBACILLUS	96
RHA		JS IN BAICH CULIIVATION USING A	
PRO	CESS C	JPTIMIZATION APPROACH	0.6
5.1	Introd	uction	96
5.2	Materi	als and Methods	100
	5.2.1	Microorganism and Inoculum Preparation	100
	5.2.2	Fermenter and Medium Composition	100
	5.2.3	Fermentation Conditions	101
	5.2.4	Analytical Methods	102
	5.2.5	Calculation of Mixing Time	103
	5.2.6	Statistical Procedures	104
5.3	Result	s and Discussion	105
	5.3.1	Effect of Aeration on <i>L. rhamnosus</i>	105
	5.3.2	Effect of Mixing on L. rhamnosus	110

		Fermentation	
	5.3.3	Effect of pH Control Strategy	114
	5.3.4	Effect of Inoculum Size on L. rhamnosus	120
		Fermentation	
	5.3.5	Effect of Temperature on L. rhamnosus	123
		Fermentation	
5.4	Conclu	asions	127
KIN	ETICS A	AND MODELING OF BATCH	129
CUL	TIVATI	ION OF LACTOBACILLUS RHAMNOSUS	
6.1	Introdu	action	129
5.2	Materi	als and Methods	132
	6.2.1	Microorganism	132
	6.2.2	Culture Medium and Conditions	132
	6.2.3	Analytical Methods	133
	6.2.4	Calculation of Mixing Time	133
	6.2.5	Model Development	134
	6.2.6	Mathematical Method	143
5.3	Result	s and Discussion	144
	6.3.1	Preliminary Testing of Growth Models : Monod versus Logistic	144
	632	Testing of Proposed Models by	146
	0.5.2	Comparison of Experimental Data to	110
		Calculated Data	
	6.3.3	Comparison of Fermentation Performance	155
		in a Shake Flask and Fermenters of	
		Different Working Volumes	
	6.3.4	Scaling-up Based on Constant Impeller Tip	158
		Speed	
6.4	Conclu	isions	161
CON	ITINUO	US CULTIVATION OF LACTOBACILLUS	163
RHA	MNOSU	/S UTILIZING AN OPTIMIZED YEAST	
EXT	RACT-0	GLUCOSE MEDIUM	
7.1	Introdu	action	163
7.2	Theory	of Continuous Cultivation for Biomass and	164
	Lactic	Acid Production	
7.3	Contin	uous Fermenter Model	171
7.4	Materi	als and Methods	174
	741	Microorganism	174
	742	Medium Composition	174
	743	Continuous Fermentation Procedures	175
	744	Analytical Methods	177
	745	Statistical Analysis	178
75	Result	s and Discussion	179
,	7 5 1	Kinetic Analysis of Growth Under Various	179
	1.2.1	Dilution Rates	1/)
	750	Determination of K and μ Values	184
	752	Testing of Proposed Models by	194
	1.3.3	resuing of rioposed models by	103

			Comparison of Experimental Data to	
		754	Comparison of Continuous and Batch	192
		7.0.1	Cultivation of <i>L</i> , <i>rhamnosus</i>	172
	7.6	Conc	lusions	194
8	EXP	ONENT	IALLY FED-BATCH CULTURE AS AN	196
Ũ	ALT	ERNAT	IVE TO BATCH AND CHEMOSTAT	170
	CUL	TURES	FOR THE PRODUCTION OF BIOMASS	
	BY <i>I</i>	ACTOB	BACILLUS RHAMNOSUS	
	8.1	Introdu	action	196
	8.2	Theory	of Exponentially Fed-Batch Fermentation	198
	8.3	Materi	als and Methods	201
		8.3.1	Microorganism	201
		8.3.2	Medium Compositions	202
		8.3.3	Exponentially Fed-Batch Cultures (EFBCs)	202
		8.3.4	Analytical Techniques	205
		8.3.5	Statistical Analysis	206
	8.4	Result	s and Discussion	206
		8.4.1	Efficiency in Controlling Specific Growth	206
			Rate (μ) by Exponential Feeding of Substrate	
		8.4.2	Effects of μ on Cell Production and Other Kinetic Parameters	207
		8.4.3	Effect of Glucose Concentration in the Feed on Fed-batch Cultivation of <i>L. rhamnosus</i>	220
	8.5	Conc	lusions	223
9	CON	CONCLUSIONS AND SUGGESTIONS FOR		
	FUR	THER V	VORK	
	9.1	Introdu	iction	224
	9.2	Conclu	ISIONS	225
BIBLIOGRAPH	IY			229
APPENDICES				252
BIODATA OF 1	THE A	AUTHO	К	254

LIST OF TABLES

Table		Page
2.1	Examples of probiotic strains used in commercial products (Sanders, 1999)	9
2.2	Commercially marketed formulations of probiotics comprising of several different strains for human use (Kaur <i>et al.</i> , 2002)	10
2.3	Examples of microorganisms applied in human probiotic products (Holzapfel et al., 1998)	10
2.4	Distribution and composition of the intestinal flora (Lichtenstein & Goldin 1993)	14
2.5	Examples of commercial <i>L. rhamnosus</i> strains and their sources (Yeung <i>et al.</i> , 1999)	25
2.6	Natural anti-microbial substances produced by lactic acid bacteria (Fernandes & Shahani, 1989)	32
2.7	Infection potential of probiotic organisms (Gasser 1994; Donohue & Salminen 1996)	37
2.8	Examples of probiotic strains in mixed cultivations	46
4.1	Treatment combinations and responses	77
4.2	Actual factor levels corresponding to coded factor levels	78
4.3	Results obtained from <i>L. rhamnosus</i> and <i>L. brevis</i> fermentations in single- and mixed-strain cultivations in MRS and the optimized media	80
4.4	Analysis of variance for evaluation of the second-order model ^a	82
4.5	Analysis of variance in the regression model selected through variable selection ^a	84
4.6	Coefficient estimates in the regression model selected through variable selection	84
4.7	Composition of the three media used for the cultivation of <i>L</i> . <i>rhamnosus</i>	93
5.1	Effects of different cultivation conditions (aerobic, facultative and anaerobic) on growth of <i>L. rhamnosus</i> in batch fermentation	107

5.2	Effects of mixing rate on L. rhamnosus fermentation	113
5.3	Effects of pH on L. rhamnosus fermentation	116
5.4	Effects of inoculum size on L. rhamnosus fermentation	122
5.5	Effects of temperature on L. rhamnosus fermentation	125
6.1	Comparison of the performance and the kinetic parameter values of <i>L. rhamnosus</i> batch cultivation using a shake flask and fermenters	147
6.2	Comparison of experimental and calculated data from shake flask fermentation using linear regression	148
6.3	Comparison of experimental and calculated data from fermentation in a 2-L fermenter using linear regression	148
6.4	Comparison of experimental and calculated data from fermentation in a 10-L fermenter using linear regression	149
6.5	Comparison of experimental and calculated data from fermentation in a 100-L fermenter using linear regression	149
6.6	Mixing rate data obtained from stirred tank fermenters with different working volumes agitated at similar impeller tip speed (0.69 ms ⁻¹)	159
7.1	Composition of media used for continuous cultivation of <i>L</i> . <i>rhamnosus</i>	175
7.2	Comparison of biomass and lactic acid productions by <i>L. rhamnosus</i> in chemostat cultures operated at different dilution rates	183
7.3	The values of μ_{max} and K_s as calculated from Lineweaver-Burk, Langmuir and Eadie-Hofstee plots	185
7.4	Comparison of experimental and calculated cell production data from <i>L. rhamnosus</i> continuous fermentations using linear regression	187
7.5	Comparison of experimental and calculated lactic acid production and glucose consumption data from <i>L. rhamnosus</i> continuous fermentations using linear regression	191
7.6	Comparison of batch and continuous cultures for biomass and lactic acid productions by <i>L. rhamnosus</i> and <i>L. delbrueckii</i>	193

8.1	Composition	of	media	used	for	fed-batch	cultivation	of L.	, ,	203
	rhamnosus									

- 8.2 Values of parameters used to design fed-batch cultures of *L*. 204 *rhamnosus*
- 8.3 Comparison of predetermined and actual μ values of EFBCs 209
- 8.4 Effect of growth rate on *L. rhamnosus* fermentation 213
- 8.5 Comparison of batch, fed-batch and continuous cultures for 219 biomass and lactic acid production by *L. rhamnosus*
- 8.6 Comparison of the performance of fed-batch cultivation of *L*. 222 *rhamnosus* using different concentrations of glucose in the feed

LIST OF FIGURES

Figure 2.1	Generalized scheme for the fermentation of glucose in lactic acid bacteria.	Page 21
2.2	Examples of steps employed for scaling-up of a fermentation process.	42
3.1	Flow diagram of the experimental work.	58
3.2	2-L stirred tank fermenter.	61
3.3	10-L stirred tank fermenter.	62
3.4	100-L stirred tank fermenter.	63
3.5	Schematic diagram, dimensions and operating variables of the 2- and 10-L stirred tank fermenters.	64
3.6	Schematic diagram, dimensions and operating variables of the 100-L stirred tank fermenter.	65
4.1	Partial-effects plot of (\bullet) pH, (\blacksquare) vitamins, (\blacktriangle) glucose and (\Box) yeast extract.	88
4.2	Response surface for the effects of pH and vitamins on the growth of <i>L. rhamnosus</i> at 5.01% (w/v) glucose and 6.0% (w/v) yeast extract.	90
4.3	Response surface for the effects of pH and glucose on the growth of <i>L. rhamnosus</i> at 1.28% (v/v) vitamin solution and 6.0% (w/v) yeast extract.	90
4.4	Response surface for the effects of pH and yeast extract on the growth of <i>L. rhamnosus</i> at 1.28% (v/v) vitamin solution and 5.01% (w/v) glucose.	91
4.5	Response surface for the effects of vitamin solution and glucose on the growth of <i>L. rhamnosus</i> at pH 6.9 and 6.0% (w/v) yeast extract.	91
4.6	Response surface for the effects of vitamin solution and yeast extract on the growth of <i>L. rhamnosus</i> at pH 6.9 and 5.01% (w/v) glucose.	92
4.7	Response surface for the effects of glucose and yeast extract on the growth of <i>L. rhamnosus</i> at pH 6.9 and 1.28% (v/v) vitamin solution.	92

4.8	Growth curves of <i>L. rhamnosus</i> in (\blacktriangle) MRS, (\blacksquare) optimumpoint, and (\bullet) center-point media.	94
5.1	Effects of aeration modes on L. rhamnosus fermentation.	106
5.2	Effects of mixing on L. rhamnosus fermentation.	112
5.3	Effects of pH on L. rhamnosus fermentation.	115
5.4	Specific growth rate as a function of time.	117
5.5	Effects of inoculum size on L. rhamnosus fermentation.	121
5.6	Effects of temperature on L. rhamnosus fermentation.	124
5.7	Specific growth rate and specific lactic acid production rate as a function of time.	126
6.1	Diagrammatic representation of a fermentation process for a single vessel.	136
6.2	The fitness of the experimental data for growth of <i>L</i> . <i>rhamnosus</i> to logistic and Monod growth models.	145
6.3	Profile of specific growth rate (μ) in batch culture under optimized conditions in optimized glucose-yeast extract medium.	145
6.4	Comparison of calculated and experimental data for batch fermentation in a shake flask.	150
6.5	Comparison of calculated and experimental data for batch fermentation in a 2-L fermenter.	156
6.6	Comparison of calculated and experimental data for batch fermentation in a 10-L fermenter.	157
6.7	Comparison of calculated and experimental data for batch fermentation in a 100-L fermenter.	157
7.1	Instrument set-up for continuous fermentation.	176
7.2	Continuous culture of <i>L. rhamnosus</i> at $D = 0.28 \text{ h}^{-1}$.	179
7.3	The effects of dilution rate, D, on the (A) biomass production and (B) lactic acid and residual glucose in the effluent of continuous fermentation of <i>L. rhamnosus</i> .	181
7.4	The effects of dilution rate, D, on the biomass yield and	182

	productivity of <i>L. rhamnosus</i> cultivation in continuous cultures using a stirred tank fermenter.	
7.5	The effects of dilution rate, D, on lactic acid yield and productivity in continuous cultures of <i>L. rhamnosus</i> .	184
7.6	Determination of μ_{max} and K_s for <i>L. rhamnosus</i> using (A) Lineweaver-Burk, (B) Langmuir and (C) Eadie-Hofstee plots.	186
7.7	Comparison of calculated and experimental cell growth data for continuous cultures of <i>L. rhamnosus</i> .	187
7.8	Comparison of calculated and experimental data for continuous cultures of <i>L. rhamnosus</i> .	191
8.1	Instrument set-up for fed-batch fermentation.	204
8.2	Determination of experimental μ in an exponentially fed-batch culture based on dry cell weight.	209
8.3	Time courses of biomass production in fed-batch cultures operated at different dilution rates.	210
8.4	Transient behavior in EFBCs operated at different dilution rates.	211
8.5	Profiles of glucose concentrations and specific glucose consumption rates in EFBCs operated at different dilution rates.	212
8.6	Profiles of lactic acid concentration and specific lactic acid production rates in EFBCs operated at different dilution rates.	216
8.7	Relationship between predetermined μ , experimental μ and glucose consumption.	217
8.8	Effects of dilution rate on (A) biomass and lactic acid productivities and (B) biomass and lactic acid yields.	218

LIST OF ABBREVIATIONS

α	growth-associated rate constant for product formation $(g g^{-1})$
β	non-growth associated rate constant for product formation (g $g^{-1} h^{-1}$)
Acetyl-P	Acetyl phosphate
ATP	Adenosine triphosphate
CFU	Colony forming units
DCW	Dry cell weight (g L ⁻¹)
Dihydroxyacetone-P	Dihydroxyacetone phosphate
DNA	Deoxyribonucleic acid
DOT	Dissolved oxygen tension
EFBC	Exponentially fed-batch culture
Fructose-1, 6-DP	Fructose-1,6-diphosphate
Fructose-6-P	Fructose-6-phosphate
Glucose-6-P	Glucose-6-phosphate
Glyceraldehyde-3-P	Glyceraldehyde-3-phosphate
GRAS	Generally Recognised as Safe
HCl	Hydrochloric acid
HPLC	High Performance Liquid Chromatography
KH ₂ PO ₄	Potassium dihydrogen phosphate
LA	Lactic acid
LDH	Lactate dehydrogenase
MgSO ₄ .7H ₂ O	Magnesium sulfate heptahydrate
MnSO ₄ .H ₂ O	Manganese sulfate monohydrate

NaOH	Sodium hydroxide
\mathcal{Q}_b	Biomass productivity (CFU mL ⁻¹ h^{-1} or g L ⁻¹ h^{-1})
Q_p	Lactic acid productivity (g L ⁻¹ h ⁻¹)
Ribulose-5-P	Ribulose-5-phosphate
RNA	Ribonucleic acid
rpm	Rotation per minute
RSM	Response surface methodology
S	Substrate concentration (g L^{-1})
t	Time (h)
v/v	Volume/volume
vvm	Volumetric airflow rate/liquid volume
w/v	Weight/volume
Xylulose-5-P	Xylulose-5-phosphate
$Y_{p/s}$	Yield of lactic acid based on glucose consumed (g g^{-1})
$Y_{x/s}$	Yield of biomass based on glucose consumed (g g^{-1})

CHAPTER 1

INTRODUCTION

The existence of probiotics has been known for over a century and the relationship between certain foods and health has been investigated for many years. A number of definitions have been proposed to describe probiotics and an appropriate one was suggested by Havenaar & Veld (1992) who defined probiotics as "mono- or mixed cultures of live microorganisms which, when applied to animal or man, beneficially affect the host by improving the properties of the indigenous microflora". The most frequently used probiotics belong to the genera Bifidobacterium and Lactobacillus (Isolauri, 2004). There is general agreement on the important role of the gastrointestinal microflora in the health status of not only humans, but also animals. Thus, it is not surprising that there has been tremendous interest in the probiotic industry as probiotics have been classified as functional food ingredients (Roberfroid, 2003). In several universities and research centers overseas and in Malaysia, there are currently many ongoing studies on various aspects of probiotics i.e. health effects, sensorial and textural effects on food products and others. In fact, the Fermentation Technology Unit, Laboratory of Enzyme and Microbial Technology, Institute of Bioscience, University Putra Malaysia, where this study was conducted, has been approached by several local companies to help them in producing several probiotic species for human and livestock consumption. One of the species requested was Lactobacillus rhamnosus, which was the focus of investigation of the present study.