

Sustainability of bio-jetfuel in Malaysia

Edited by Jean-Marc Roda

Contents

-

- .

Abbreviations	9
Acknowledgements	11
Introduction	13
1 From biomass to bio-jetfuel	17
2 Potential feedstocks and non-aviation biofuels	25
3 Oil palm biomass	31
4 Paddy biomass	37
5 Rubberwood biomass	41
6 Sugarcane biomass	45
7 Coconut biomass	49
8 Woody biomass	53
9 Sustainable feedstocks for bio-jetfuel	57
10 LCA of agricultural production systems-the case of paddy	61
11 Logistics and transportation costs	65
12 Socio-political framework	73
Conclusion and perspectives	87
References	91
Index	103

' _

Sustainability of bio-jetfuel in Malaysia

ABSTRACT

Aviation represents a small but growing share of global CO₂ emissions (2-3%), and Southeast Asia is where this industry grows the fastest. The industry targets 50% reduction in net CO₂ emission by 2050, and will need at least 2 million tonnes of biofuel by 2020. In Southeast Asia, competition between natural spaces (such as tropical forests) and biofuel development should be avoided. A complex interaction of political, sociological and natural factors influence the logistics, the infrastructures and the potential sustainability of biofuel. The contrasted growing conditions, and the geographically scattered nature of the potential resources for aviation industry, add to the complexity. Building visions and actions necessitates a range of assessments and researches, to insure sustainability of appropriate scenarios and pathways. In Malaysia, a consortium established a Center of Excellence on Biomass Valorisation for aviation, in order to study the biomass feedstocks and pathways which are necessary to meet the industry target, and to ensure sustainability.

Keyword: Bio-jetfuel; Aviation; Malaysia