UNIVERSITI PUTRA MALAYSIA

MICROWAVE VACUUM DRYING CHARACTERISTICS OF NONI FRUITS (MORINDA CITRIFOLIA L.) AND THEIR EFFECTS ON SCOPOLETIN CONTENT

MINA HABIBI ASR

FK 2009 33
MICROWAVE VACUUM DRYING CHARACTERISTICS OF NONI FRUITS
(MORINDA CITRIFOLIA L.) AND THEIR EFFECTS ON
SCOPOLETIN CONTENT

By

MINA HABIBI ASR

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in
Fulfilment of Requirements for the Degree of Master of Science

May 2009
In the Name of Allah
The Most Compassionate
The Most Merciful

To My Parents For their love and support
The main objective of this study was to investigate microwave-vacuum drying characteristics of Morinda citrifolia fruit slices and drying effects on Scopoletin content. A laboratory microwave-vacuum dryer was designed and fabricated and preliminary tests were conducted to ensure that its operation is satisfactory. M. citrifolia fruit slices were dried under different drying techniques such as: microwave-vacuum drying, microwave drying (without applying vacuum) and sun drying. Microwave-vacuum drying of M. citrifolia fruit slices were carried out at three levels of microwave power; 180, 300 and 450 W and four levels of absolute pressure; 91 kPa, 86 kPa, 71 kPa and 41 kPa, whilst, microwave drying was conducted at atmospheric pressure (101 kPa). Drying was performed in two microwave application namely pulsed and continuous. In pulsed microwave drying mode, the magnetron was alternatively switched on and off in order...
to achieve desired pulsing ratio. The magnetron was switched on for 30 s and switched off for 150 s, corresponding to selected pulsing ratio of 6.

M. citrifolia fruit slices having initial moisture content of about 5-6 g water/g dry matter were dried to final moisture content of approximately 0.5 g water/g dry matter within 10 to 252 min depending on microwave power, vacuum condition and microwave heating mode. For continuous microwave heating mode, the drying time was within 5 to 45 min, while for pulsed microwave heating mode it was within 33 to 198 min. Higher microwave power level and lower pressure increased the drying rate. The result shows that even though pulsed microwave heating mode was more time consuming overall, but total power-on time was about the same as continuous microwave heating mode; however, in pulsed microwave heating mode drying took place at lower product temperature. Page equation was most satisfactory to describe thin-layer drying characteristic of *M. citrifolia* fruit slices among the three tested thin-layer drying equations, with lower reduced chi-square X^2 and RMSE and higher value for R^2.

Scopoletin was extracted from fresh and dried sample by solvent method using methanol and spectrofluorometric method was used for its determination. The *Scopoletin* content retention of *M. citrifolia* fruit slices dried under different drying techniques was evaluated and was found to be within 5 to 53%. In pulsed microwave heating mode, drying at atmospheric pressure resulted in higher *Scopoletin* content reduction with microwave power set at 450 W power level (20%); however, in continuous microwave heating mode at the atmospheric pressure, the lowest microwave power of 180W resulted in higher *Scopoletin* content reduction (51%). The reason for this, is due to
longer drying time required at lower microwave power level, and higher temperature achieved due to longer power-on time during continuous microwave heating mode compared to pulsed microwave heating mode.
Objektif utama kajian ini adalah untuk mengkaji ciri-ciri pengeringan gelombang mikro ke atas potongan buah Morinda citrifolia dan kesan pengeringan terhadap kandungan Scopoletin. Berdasarkan objektif ini, pengeringan gelombang mikro vakum dalam makmal telah direka dan dibina serta ujian percubaan telah dijalankan. Potongan buah M. citrifolia telah dikeringkan dibawah beberapa kaedah pengeringan seperti pengeringan gelombang mikro vakum, pengeringan gelombang mikro sahaja (tanpa penggunaan vakum) dan pengeringan di bawah cahaya matahari. Pengeringan potongan buah M. citrifolia telah dijalankan di bawah tiga peringkat kuasa gelombang mikro iaitu 180W, 300W dan 450W serta 4 91 kPa, 85 kPa, 71 kPa dan 41 kPa gelombary mikro icendalian pada tekanan atmosfer (101 kPa). Pengeringan turut melibatkan dua mod dinamakan secara denyutan dan secara berterusan. Dalam mod denyutan, suis magnetron secara alternatif telah dihidupkan dan dimatikan berturut dalam proses mendapatkan...
ratio denyutan gelombang yang dikehendaki. Magnetron dihidupkan selama 30 saat dan dimatikan selama 150 saat, berkadaran pada ratio denyutan sebanyak 6.

Potongan buah M.citrifolia mempunyai kandungan lembapan sekitar 5-6 g air/ g berat kering dikeringkan kepada kandungan lembapan terakhir sebanyak 0.5 g air/g berat kering dalam 33-252 bergantung kepada kuasa gelombang mikro, tekanan vakum dan mod pengeringan. Pada peringkat kuasa gelombang mikro yang lebih tinggi dan tekanan vakum yang rendah, kadar pengeringan didapati telah meningkat. Jumlah tempoh pengeringan melalui mod pengeringan berterusan didapati kurang berbanding pengeringan mod denyutan tetapi jumlah tenaga yang digunakan tidak banyak berbeza bagi kedua-dua mod. Keputusan ini menunjukkan bahawa mod denyutan walaupun secara keseluruhan memakan masa tetapi jumlah penggunaan tenaga adalah sama seperti mod berterusan. Walau bagaimana pun pengeringan dilakukan pada suhu produk yang lebih rendah.

Pengiraan adalah amat memuaskan untuk mengambarkan cirri-ciri lapisan nipis potongan buah M.citrifolia di antara 3 pengiraan ujian lapisan nipis dengan chi square \((X^2)\) rendah yang telah dikurangkan dan RMSE serta nilai \(R^2\) yang lebih tinggi. *Scopoletin* telah diestrik dengan metanol dan kaedah Spektroflorometrik telah digunakan untuk pengesahan. Pengekalan *Scopoletin* dalam potongan buah *M.citrifolia* yang telah dikeringkan di bawah beberapa kaedah pengeringan dinilai. Dalam pengeringan mod denyutan, pada tekanan atmosfera menunjukkan jumlah pengurangan *Scopoletin* yang paling tinggi dengan kuasa gelombang mikro pada 450W berbanding pengeringan mod berterusan pada kuasa gelombang mikro paling rendah iaitu 180W.
menunjukkan jumlah pengurangan kandungan *Scopoletin* yang paling tinggi. Ini disebabkan oleh jumlah masa yang lebih panjang untuk pengerieran berlaku pada peringkat kuasa gelombang mikro yang lebih rendah dalam mod berterusan sementara suhu adalah lebih tinggi berbanding kepada pengerieran mod denyutan disebabkan jumlah masa tenaga yang lebih lama.
ACKNOWLEDGMENTS

First and foremost, I wish to express my deepest gratitude to God, for making the conditions favorable for me. He gave me the opportunity, patience, strength and competence that enabled me to present this thesis.

I would like to express my special and full gratitude to my honorable supervisor Associate Professor Dr. Mohd Nordin Ibrahim, who has borne the main burden of supervision with unfailing patience and encouragement in the face of my recalcitrance throughout this study. Associate Professor Dr. Mohd Nordin Ibrahim serenity and guidance have made him an admirable supervisor. Working with him has been a great pleasure to me. My sincere thanks also go to members of supervisory committee, Dr. Siti Mazlina Mustapa Kamal and Associate Professor Dr. Sergei Spotar for their precious academic assistance and guidance on my research.

I wish to acknowledge Dr. Zaizi for his keen interest, time, kindness and help in the chemical analysis and also Mr. Zainal from Department of Chemistry. I would like to express my appreciation to Associate Professor Dr. Robiah Yunus from Department of Chemical and Environmental Engineering for allowing me to use the laboratory equipment; also I appreciate from Mr. Joha Muhsidi b. AbdulWahab for his assistance in laboratory.

I am grateful to the laboratory staffs in Process and Food Engineering Department: Mr. Kamarulzaman Dahlin, Mr. Meor, Mr. Mohd Noh Abdul Majid, Mr. Muhammad
Badrushah Bahat-uddin, Mr. Raman Morat, Miss. Siti Hajar Zakaria and specially Mr. Mohd Zahiruddin Daud for their assistance and advice in laboratory. Also, I would like to thank the supplier Mr. Amir. This study could not have ever been started without the laboratory experimental dryer supplied by him.

Personally, I would especially like to thank my dear friends specially Mike, Maryam and Mehrzad who were next to me during the time spent in UPM and who were always there to help me with their knowledge, experience, encouragement, time and especially understanding and moral supports.

Last but not the least, my profound and heartiest gratitude goes to my dear father and mother, Ezzatollah and Khadijeh, for their great love and support in all of my life. Words are incapable to express my appreciation to them. Also, I would like to appreciate my dear brother, Ali and my beloved sisters, Akram and Simin for their endless love and inspirations, whom I’ve missed them a lot over the past few years.
I certify that an Examination Committee has met on 22th May 2009 to conduct the final examination of Mina Habibi Asr on her Master of Science thesis entitled ‘Microwave-Vacuum Drying Characteristic of Morinda Citrifolia Fruits and Drying Effects on Scopoletin Content’ in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the student be awarded the relevant degree. Members of Examinations Committee were as follows:

Rusly Abdul Rahman, PhD
Professor
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Ling Tau Chuan, PhD
Associated Professor
Faculty of Engineering
Universiti Putra Malaysia
/Internal Examiner

Chin Nyuk Ling, PhD
Ir. Doctor
Faculty of Engineering
Universiti Putra Malaysia
/Internal Examiner

Mohd Rozainee Taib, PhD
Associated Professor
Faculty of Chemical and Natural Resources Engineering
Universiti Teknologi Malaysia
(Member)

BUJANG KIM HUAT, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
This thesis submitted to senate of Universiti Putra Malaysia and has been accepted as fulfillment of partial requirement for the degree of Master of Science. The members of the Supervisory Committee as follows:

Mohd Nordin Ibrahim, PhD
Associated Professor
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Siti Mazlina Mustapa Kamal, PhD
Dr, Head Department of Process and Food Engineering
Faculty of Engineering
Universiti Putra Malaysia
(Member)

Sergei Spotar, PhD
Associate Professor
Faculty of Engineering
University Nottingham, Malaysia campus
(Member)

HASANAH MOHD GHAZALI, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 9 July 2009
DECLARATION

I decelerate that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at University Putra Malaysia or at any other institution.

(Signature) ______________

Mina Habibi Asr
Date
TABLE OF CONTENTS

ABSTRACT iii
ABSTRAK vi
ACKNOWLEDGMENTS ix
APPROVAL xi
DECLARATION xiii
LIST OF TABLES xviii
LIST OF FIGURES xx
LIST OF APPENDICES xxvi
GLOSSARY OF TERMS xxviii

CHAPTERS

1 INTRODUCTION

1.1 Overview 1
1.2 Objectives of Study 5
1.3 Scope of Study 5

2 LITERATURE REVIEW

2.1 Introduction 6
2.2 Fundamental of Drying 7
2.3 Drying Methods 8
2.3.1 Sun Drying 9
2.3.2 Hot Air Drying 10
2.3.3 Freeze Drying 10
2.3.4 Vacuum Drying 11
2.3.5 Microwave Drying 12
2.4 Principle of Microwave Drying 12
2.4.1 Basic of Microwave 12
2.4.2 Dielectric Properties of Food 14
2.4.3 Mechanism of Microwave Heating 15
4 RESULT AND DISCUSSIONS

4.1 Preliminary Studies on Microwave-Vacuum Dryer Operation
 4.1.1 Determination of Microwave Output Power
 4.1.2 Determination of Microwave Power Distribution Field inside Jar
 4.1.3 Effect of Jar on Microwave Power Absorption

4.2 Preliminary Drying Test on *M. citrifolia* Fruit Slices
 4.2.1 Drying Characteristics of *M. citrifolia* Fruit Slices under Different Pulsing Ratio
 4.2.2 Drying Characteristics of *M. citrifolia* Fruit Slices under Different Sample Thickness

4.3 Drying Characteristic of *M. citrifolia* Fruit Slices under Microwave and Microwave-Vacuum Drying Conditions
 4.3.1 Microwave Drying Characteristic of *M. citrifolia* Fruit Slices at Atmospheric Pressure Characteristics
 4.3.2 Microwave-Vacuum Drying Characteristic of *M. citrifolia* Fruit

4.4 Comparison of Drying Characteristics between Microwave Drying and Microwave-Vacuum Drying

4.5 Comparison of Drying Characteristics between Pulsed and Continuous Microwave Heating Mode
5 SUMMARY, CONCLUSION AND RECOMMENDATIONS

5.1 Summary 140
5.2 Conclusions 140
5.3 Recommendations for Further Study 143

REFERENCES 144
APPENDICES 156
BIODATA OF THE STUDENT 186
LIST OF TABLES

<table>
<thead>
<tr>
<th>Tables</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Retention of chemical components in microwave-vacuum and hot air drying</td>
<td>24</td>
</tr>
<tr>
<td>2.2 Thin layer drying equations</td>
<td>28</td>
</tr>
<tr>
<td>2.3 Color and firmness of fruit at different ripening stages</td>
<td>30</td>
</tr>
<tr>
<td>2.4 Location of chemical compounds in M. citrifolia plant</td>
<td>33</td>
</tr>
<tr>
<td>4.1 Microwave power input and output</td>
<td>56</td>
</tr>
<tr>
<td>4.2 Effect of jar on microwave power absorption</td>
<td>58</td>
</tr>
<tr>
<td>4.3 Pulsing ratio chosen for experiment</td>
<td>59</td>
</tr>
<tr>
<td>4.4 Effect of different microwave power level on drying time for microwave drying</td>
<td>71</td>
</tr>
<tr>
<td>4.5 Effect of different microwave power level on drying time for microwave-vacuum drying</td>
<td>82</td>
</tr>
<tr>
<td>4.6 Drying time for pulsed and continuous microwave heating modes</td>
<td>117</td>
</tr>
<tr>
<td>4.7 Product and environmental temperatures during sun drying</td>
<td>120</td>
</tr>
<tr>
<td>4.8 Values of equation constants and statistical results for drying experiments using 180W</td>
<td>123</td>
</tr>
<tr>
<td>4.9 Values of equation constants and statistical results for drying experiments using 300W</td>
<td>124</td>
</tr>
<tr>
<td>4.10 Values of equation constants and statistical results for drying experiments using 450W</td>
<td>126</td>
</tr>
<tr>
<td>4.11 Values of equation constants and statistical results for sun drying</td>
<td>127</td>
</tr>
<tr>
<td>4.12 Analysis of variance table for pulsed microwave heating mode</td>
<td>133</td>
</tr>
<tr>
<td>4.13 Mean of Scopoletin reduction under different power</td>
<td>133</td>
</tr>
<tr>
<td>4.14 Mean of Scopoletin reduction under different pressure</td>
<td>134</td>
</tr>
</tbody>
</table>
4.15 Analysis of variance table for continuous microwave heating mode 136

4.16 Mean of *Scopoletin* reduction under different power 136

4.17 Mean of *Scopoletin* reduction under different pressure 137
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figures</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Typical drying rate curve</td>
<td>7</td>
</tr>
<tr>
<td>2.2 A household microwave oven</td>
<td>18</td>
</tr>
<tr>
<td>2.3 Effect of pressure on the boiling point of water</td>
<td>23</td>
</tr>
<tr>
<td>2.4 Ripe and unripe M. citrifolia fruit</td>
<td>30</td>
</tr>
<tr>
<td>2.5 Chemical structure of Scopoletin</td>
<td>36</td>
</tr>
<tr>
<td>3.1 Outline of experimental activities</td>
<td>39</td>
</tr>
<tr>
<td>3.2 Schematic diagram of laboratory microwave-vacuum dryer</td>
<td>41</td>
</tr>
<tr>
<td>3.3 Absorbed power inside and outside jar at input power of 100W</td>
<td>44</td>
</tr>
<tr>
<td>3.4 Experimental drying plan</td>
<td>47</td>
</tr>
<tr>
<td>4.1 Microwave power distribution inside jar (800W)</td>
<td>57</td>
</tr>
<tr>
<td>4.2 Drying curves of M. citrifolia fruit slices at pulsing ratio of 2</td>
<td>60</td>
</tr>
<tr>
<td>4.3 Drying curves of M. citrifolia fruit slices at pulsing ratio of 4</td>
<td>61</td>
</tr>
<tr>
<td>4.4 Drying curves of M. citrifolia fruit slices at pulsing ratio of 6</td>
<td>61</td>
</tr>
<tr>
<td>4.5 Drying rate curve of M. citrifolia fruit slices at different pulsing Ratio</td>
<td>62</td>
</tr>
<tr>
<td>4.6 Effect of different pulsing ratio on product temperature after every power-on time</td>
<td>63</td>
</tr>
<tr>
<td>4.7 Effect of different pulsing ratio on product temperature after every power-off time</td>
<td>63</td>
</tr>
<tr>
<td>4.8 Drying curves of M. citrifolia fruit slices under different sample Thickness</td>
<td>65</td>
</tr>
<tr>
<td>4.9 Drying rate curve of M. citrifolia fruit slices under different sample thickness</td>
<td>66</td>
</tr>
<tr>
<td>4.10 Effect of different sample thickness on product temperature</td>
<td>67</td>
</tr>
</tbody>
</table>
4.11 Effect of different sample thickness on product temperature after every power-on time
4.12 Pulsed microwave drying curve of *M. citrifolia* fruit slices under different microwave power levels (101 kPa)
4.13 Pulsed microwave drying rate curve of *M. citrifolia* fruit slices under different microwave power levels (101 kPa)
4.14 Average temperatures of *M. citrifolia* fruit slices after every power on-time (101 kPa)
4.15 Average temperatures of *M. citrifolia* fruit slices after every power off-time (101 kPa)
4.16 Continuous microwave drying curves of *M. citrifolia* fruit slices under different microwave power levels (101 kPa)
4.17 Continuous microwave drying rate curves of *M. citrifolia* fruit slices under different microwave power levels (101 kPa)
4.18 Average temperatures of *M. citrifolia* fruits slices under continuous microwave drying (101 kPa)
4.19 Pulsed microwave vacuum drying curve of *M. citrifolia* fruit slices at different microwave power levels and at 91 kPa
4.20 Pulsed microwave vacuum drying curve of *M. citrifolia* fruit slices at different microwave power levels and at 86 kPa
4.21 Pulsed microwave vacuum drying curve of *M. citrifolia* fruit slices at different microwave power levels and at 71 kPa
4.22 Pulsed microwave vacuum drying curve of *M. citrifolia* fruit slices at different microwave power levels and at 41 kPa
4.23 Pulsed microwave vacuum drying rate curves of *M. citrifolia* fruit slices at different microwave power and at 91 kPa
4.24 Pulsed microwave vacuum drying rate curves of *M. citrifolia* fruit slices at different microwave power and at 86 kPa
4.25 Pulsed microwave vacuum drying rate curves of *M. citrifolia* fruit slices at different microwave power and at 71 kPa
4.26 Pulsed microwave vacuum drying rate curves of *M. citrifolia* fruit slices at different microwave power and at 41 kPa

4.27 Average temperatures of *M. citrifolia* fruits slice after every power-on time (30s) for 91 kPa

4.28 Average temperature of *M. citrifolia* fruit slices after every power-off time (150s) for 91 kPa

4.29 Average temperature of *M. citrifolia* fruit slices after every power-on time (30s) for 86 kPa

4.30 Average temperature of *M. citrifolia* fruit slices after every power-off time (150s) for 86 kPa

4.31 Average temperature of *M. citrifolia* fruit slices after every power-on time (30s) for 71 kPa

4.32 Average temperature of *M. citrifolia* fruit slices after every power-off time (150s) for 71 kPa

4.33 Average temperature of *M. citrifolia* fruit slices after every power-on time (30s) for 41 kPa

4.34 Average temperature of *M. citrifolia* fruit slices after every power-off time (150s) for 41 kPa

4.35 Pulsed microwave vacuum drying curve of *M. citrifolia* fruit slices at different pressure levels and at 180W microwave power level

4.36 Pulsed microwave vacuum drying curve of *M. citrifolia* fruit slices at different pressure levels and at 300W microwave power level

4.37 Pulsed microwave vacuum drying curve of *M. citrifolia* fruit slices at different pressure levels and at 450W microwave power level

4.38 Pulsed microwave vacuum drying rate curves of *M. citrifolia* fruit slices at different pressure levels and at 180W microwave power

4.39 Pulsed microwave vacuum drying rate curves of *M. citrifolia* fruit slices at different pressure levels and at 300W microwave power

4.40 Pulsed microwave vacuum drying rate curves of *M. citrifolia* fruit slices at different pressure levels and at 450W microwave power

4.41 Average temperature of *M. citrifolia* fruit slices after each

xxii
power-on time (30s) at 180W microwave power

4.42 Average temperature of *M. citrifolia* fruit slices after each power-on time (30s) at 300W microwave power

4.43 Average temperature of *M. citrifolia* fruit slices after each power-on time (30s) at 450W microwave power

4.44 Continuous microwave vacuum drying curves of *M. citrifolia* fruit slices at different microwave power levels and at 91 kPa

4.45 Continuous microwave vacuum drying curves of *M. citrifolia* fruit slices at different microwave power levels and at 86 kPa

4.46 Continuous microwave vacuum drying curves of *M. citrifolia* fruit slices at different microwave power levels and at 71 kPa

4.47 Continuous microwave vacuum drying curves of *M. citrifolia* fruit slices at different microwave power levels and at 41 kPa

4.48 Continuous microwave vacuum drying rate curves of *M. citrifolia* fruit slices under different microwave power levels for 91 kPa

4.49 Continuous microwave vacuum drying rate curves of *M. citrifolia* fruit slices under different microwave power levels for 86 kPa

4.50 Continuous microwave vacuum drying rate curves of *M. citrifolia* fruit slices under different microwave power levels for 71 kPa

4.51 Continuous microwave vacuum drying rate curves of *M. citrifolia* fruit slices under different microwave power levels for 41 kPa

4.52 Average temperature of *M. citrifolia* fruit slices at different microwave power levels and at 91 kPa

4.53 Average temperature of *M. citrifolia* fruit slices at different microwave power levels and at 86 kPa

4.54 Average temperature of *M. citrifolia* fruit slices at different microwave power levels and at 71 kPa

4.55 Average temperature of *M. citrifolia* fruit slices at different microwave power levels and at 41 kPa

4.56 Continuous microwave vacuum drying curves of *M. citrifolia* fruit slices at different pressure levels and at 180W microwave power level
Continuous microwave vacuum drying curves of *M. citrifolia* fruit slices at different pressure levels and at 300W microwave power level

Continuous microwave vacuum drying curves of *M. citrifolia* fruit slices at different pressure levels and at 450W microwave power level

Continuous microwave vacuum drying rate curves of *M. citrifolia* fruit slices at different pressure levels and at 180W microwave power level

Continuous microwave vacuum drying rate curves of *M. citrifolia* fruit slices at different pressure levels and at 300W microwave power level

Continuous microwave vacuum drying rate curves of *M. citrifolia* fruit slices at different pressure levels and at 450W microwave power level

Average temperature of *M. citrifolia* fruit slices at different pressure levels and at 180W microwave power

Average temperature of *M. citrifolia* fruit slices at different pressure levels and at 300W microwave power

Average temperature of *M. citrifolia* fruit slices at different pressure levels and at 450W microwave power

Pulsed microwave drying curve of *M. citrifolia* fruit slices at different pressure levels and at 180W microwave power level

Pulsed microwave drying curve of *M. citrifolia* fruit slices at different pressure levels and at 450W microwave power level

Pulsed microwave drying curve of *M. citrifolia* fruit slices at different pressure levels and at 180W microwave power level after each power-on time (30s)

Pulsed microwave drying curve of *M. citrifolia* fruit slices at different pressure levels and at 450W microwave power level after each power-on time (30s)

Pulsed and continuous microwave-vacuum drying curve of *M. citrifolia* fruit slices

Pulsed and continuous microwave-vacuum drying product temperature of *M. citrifolia* fruit slices

Pulsed and continuous microwave-vacuum drying rate curves of *M. citrifolia* fruit slices

Sun drying curve of *M. citrifolia* fruit slices