Structure, microstructure and magnetic properties study of ceramic composite

(La0.67Ca0.33MnO3)1-x/(Nano-sizeda-Fe2O3)x

ABSTRACT

The structural, microstructure and magnetic properties of polycrystalline (La_{0.67}Ca_{0.33}MnO₃)₁ $x/(\alpha-Fe_2O_3)x$ composites where x = 0%, 5%, 10%, 15%, 20% were investigated. Polycrystalline La_{0.67}Ca_{0.33}MnO₃ (LCMO) was synthesized via solid state reaction at high sintering temperature while for nano-sized Fe₂O₃ (20-50 nm) a commercial product was used. X-ray diffraction (XRD) patterns show that parent compound of La_{0.67}Ca_{0.33}MnO₃ is a single phase without any detectable impurity and give orthorhombic structure with space group Pbnm (62) while α - Fe₂O₃ is in cubic form with space group I a -3 (206). As Fe₂O₃ content x increases, the magnetization M values decrease as observed via Vibrating Sample Magnetometer (VSM) at room temperature. Higher magnetization is noticed inpure LCMO rather than in LCMO composites added with α - Fe₂O₃. However, Scanning Electron Microscopy (SEM) shows that nano-sized Fe₂O₃ mainly distributed at the grain boundary of La_{0.67}Ca_{0.33}MnO₃. The particle size of LCMO composites shows fluctuation; meanwhile particle size of α - Fe₂O₃ shows almost similar values except for sample with the addition of 15% of a- Fe₂O₃ where lowest particle size with higher coercivity and retentivity are observed. As compared to pure La0.67Ca0.33MnO3, Fe₂O₃ doping level at the grain boundaries can be assumed to modify the magnetic properties of La_{0.67}Ca_{0.33}MnO₃.

Keyword: Bulks; Structura; Grain boundaries; Magnetic materials; Perovskite manganites