DEVELOPMENT OF A NEW JOINTING SYSTEM
FOR OPEN PLAN OFFICE SYSTEM

MOHD SHAHRIZAL B. Hj. DOLAH

MASTER OF SCIENCE
UNIVERSITI PUTRA MALAYSIA

2006
DEVELOPMENT OF A NEW JOINTING SYSTEM
FOR OPEN PLAN OFFICE SYSTEM

By

MOHD SHAHRIZAL B. Hj. DOLAH

Thesis Submitted to School of Graduate Studies, Universiti Putra Malaysia, in
Fulfilment of the Requirement for Degree of Master of Science

July 2006
DEDICATION

This thesis is dedicated to my parents

and my family,

my wife Hanim and my daughters Sarah, Illyah and Aein
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for degree of Master of Science

DEVELOPMENT OF A NEW JOINTING SYSTEM FOR OPEN PLAN OFFICE SYSTEM

By

MOHD SHAHRIZAL B. Hj. DOLAH

July 2006

Chairman : Associate Professor Rosnah bt Mohd Yusuff, PhD
Faculty : Engineering

Most modern offices use open plan office system due to the flexibility of the product. The open plan office system (OPS) can be customized from low screen to high screen and can be installed and dismantled according to the office needs. According to MIDA (Malaysian Industrial Development Authority) the total sales for Malaysian office furniture industries was RM 1.6 billion in 2003 of which 7.2% (115 million) comes from sales generated from the open plan office system. The sales report showed the importance of the open plan office system in creating the office environment. Since the demand of OPS is increasing, effective ways of assembling the system is required. Most OPS manufacturer uses bolts and nuts as a jointing system. However, this jointing system requires many parts and the assembly process is time consuming. Based on a survey carried out on 26 OPS manufacturers, the main criteria of the jointing system design identified were those that can increase efficiency and facilitate assembly. One of the important functions of the
jointing systems is to ensure that the system is flexible during the assembly process. Based on these findings, the study looked into various jointing system design concepts and the different materials that can satisfy all the requirements. Two designs of the jointing system have been proposed in this study. The designs were based on the snap fit concept and referred to ‘Design for Assembly’ (DfA) guidelines. Design proposal 1 is based on cylindrical or annular snap fit joint concept and design proposal 2 is based on a cantilever lug snap fit joint concept. The assembly and strength of the joints of the proposed designs were simulated using ‘COSMOSXpress 2003’ software with reference to the tile system model. The simulation showed that the new jointing system complied with all the requirements of the design factor specified by the manufacturers and DfA guidelines. It showed that the new jointing system is better than bolt and nut joint not only in terms of ease of assembly but also efficiency. The simulation results showed that although both design proposal 1 (cylindrical) and 2 (cantilever) were similar in many aspects which are easy to assembly, reduce time, light weight and reduce part, but design proposal 1 failed the strength test. The advantage in strength makes design proposal 2 is a better choice.
I wish to express my gratitude and thank to my supervisor Ass. Prof. Dr. Rosnah bt Mohd Yusuff, for the persistent guidance, assistance, and support throughout the study period.

Gratitude and thank are also to all members of supervisory committee, Ir Mohd Rasid b. Osman and En Ahmad Rizal b. Abdul Rahman for their constructive comments, advice and guidance.

Special thank to all my friend out there in the furniture industries, for their valuable experience and knowledge. Lecturers and friends from Department of Mechanical and Manufacturing, Faculty of Engineering and Department of Industrial Design, Faculty of Design and Architecture (UPM).

Finally, I also wish to express special thank to my family and other individuals for their support and encouragement for making this study possible.

“Advancing the world with logic design”
+ Leonardo da Vinci+
I certify that an Examination Committee has met on 13 July 2006 to conduct the final examination of Mohd Shahrizal B. Hj. Dolah on his Master of Science thesis entitled “Development of a New Jointing System for Open Plan Office System” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Member of the Examination Committee are as follow:

Megat Mohamad Hamdan Megat Ahmad, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Napsiah Ismail, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Internal Examiner)

Tang Sai Hong, PhD
Lecturer
Faculty of Engineering
Universiti Putra Malaysia
(Internal Examiner)

Che Hassan Che Haron, PhD
Associate Professor
Faculty of Engineering
Universiti Kebangsaan Malaysia
(External Examiner)

HASANAH MOHD GHAZALI, PhD
Professor / Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date :
This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as partial fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee are as follow:

Rosnah Mohd Yusuff, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Irv Mohd Rasid Osman
Lecturer
Faculty of Engineering
Universiti Putra Malaysia
(Member)

En Ahmad Rizal Abdul Rahman
Lecturer
Faculty of Design and Architecture
Universiti Putra Malaysia
(Member)

AINI IDERIS, PhD
Professor / Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

I hereby declare that the thesis is based on my original work except for quotation and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

MOHD SHAHRIZAL B. Hj. DOLAH

Date :
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICAITON</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>v</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>vii</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>viii</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xv</td>
</tr>
<tr>
<td>GLOSSARY OF TERMS</td>
<td>xvii</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION
1.1 General background 1
1.2 Jointing System in open plan office system 1

2 LITERATURE REVIEW
2.1 History of Open Plan Office System 6
2.2 Office partition 7
2.2.1. Fixed partition 7

8
2.2.2. Demountable Wall System 8
2.2.3. Open Plan Office System (OPS) 9

2.3 Types of Open Plan office System 11
2.3.1. Tiles system 12
2.3.2. Solid panel system 15

2.4 Jointing system in furniture industries 17
2.4.1. Adhesives jointing 17
2.4.2. Wood jointing 18
2.4.3. Mechanical jointing 21

2.5 Open Plan office jointing system 27

2.6 Polymer as a jointing material 29
2.6.1 Type of polymers 27
2.7 Design factor / Product Design Specification (PDS) 31
2.8 Total design (design process) 32
2.9 Design for Manufacturing (DfM) and Design for Assembly (DfA) 34
2.10 Computer simulation in design 37
2.10.1. SolidWorks COSMOSXpress 39

3 METHODOLOGY
3.1 Literature review 42
3.2 Questionnaire 42
3.3 Sampling 44
3.4 Frame selection 44
3.5 Data analysis 45
3.6 Design development 46
3.6.1. Design proposal 46
3.7 Testing and analysis 47
3.8 Assembly efficiency 48
3.9 Final design 48

4 RESULT AND DISCUSSION
4.1 Questionnaire analysis 49
4.1.1. Section 1 49
4.1.2 Section 2 50
4.1.3. Section 3 52
4.2 Analysis of different type of jointing system 55
4.3 Development of new jointing system 56
4.3.1. Material selection 56
4.3.2. Design development 56
4.3.3. Jointing location 58
4.4 Design proposal 1 60
4.5 Design proposal 2 62
4.6 Testing and analysis 65
4.6.1 Easy to assemble 65
4.6.2 Weight 69
4.6.3. Time 70
4.6.4. Strength 75
4.6.5. Number of part 79
4.7 Assembly efficiency 80
4.8 Summary of findings

4.8.1 Bolt and nut and plastic bracket comparison

4.8.2 Jointing ability compare to the DfA guideline

5 CONCLUSION AND RECOMMENDATION

5.1 Conclusion 84
5.2 Recommendation for future works 87

REFERENCES 88
APPENDIX 1 93
APPENDIX 2 97
APPENDIX 3 99
BIODATA OF THE AUTHOR 103
LIST OF TABLES

<table>
<thead>
<tr>
<th>Tables</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 OPS frame dimensions</td>
<td>10</td>
</tr>
<tr>
<td>2.2 Adhesives jointing characteristic</td>
<td>18</td>
</tr>
<tr>
<td>2.3 Wood jointing characteristic</td>
<td>19</td>
</tr>
<tr>
<td>2.4 Mechanical jointing characteristics</td>
<td>21</td>
</tr>
<tr>
<td>2.5 Type of polymer used in furniture industries</td>
<td>30</td>
</tr>
<tr>
<td>2.6 Feature relative to other polymer</td>
<td>30</td>
</tr>
<tr>
<td>2.7 Property of polymer</td>
<td>31</td>
</tr>
<tr>
<td>4.1 Companies background and involvement in OPS manufacturing</td>
<td>50</td>
</tr>
<tr>
<td>4.2 Jointing system analysis</td>
<td>52</td>
</tr>
<tr>
<td>4.3 Current jointing system problem</td>
<td>53</td>
</tr>
<tr>
<td>4.4 Design factors in developing the new jointing system</td>
<td>54</td>
</tr>
<tr>
<td>4.5 Advantages and disadvantages of current jointing system</td>
<td>55</td>
</tr>
<tr>
<td>4.6 Weight comparisons between plastic bracket and bolt and nut</td>
<td>70</td>
</tr>
<tr>
<td>4.7 Assembly time comparison</td>
<td>75</td>
</tr>
<tr>
<td>4.8 Material test comparison</td>
<td>79</td>
</tr>
</tbody>
</table>
4.9 Bolt and nut jointing system
80
4.10 Plastic bracket jointing system - proposal 1 and 2
81
4.11 Bolt and nut and plastic bracket comparison
82
4.12 Jointing ability compare to the DfA guideline 82
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:1 Open plan office system</td>
<td>1</td>
</tr>
<tr>
<td>1:2 Bolt and nut jointing system</td>
<td>3</td>
</tr>
<tr>
<td>2.1 Tile system frame structure</td>
<td>13</td>
</tr>
<tr>
<td>2.2 Solid panel frame</td>
<td>16</td>
</tr>
<tr>
<td>2.3 Snap fit concept</td>
<td>23</td>
</tr>
<tr>
<td>2.4 Cylindrical snap fit joint concept</td>
<td>24</td>
</tr>
<tr>
<td>2.5 Cantilever lugs joint concept</td>
<td>25</td>
</tr>
<tr>
<td>2.6 Element of design factor</td>
<td>32</td>
</tr>
<tr>
<td>2.7 Total design activities</td>
<td>33</td>
</tr>
<tr>
<td>3.1 Research conceptual frame work</td>
<td>41</td>
</tr>
<tr>
<td>3.2 OPS R1.2</td>
<td>45</td>
</tr>
<tr>
<td>4.1 Idea sketches</td>
<td>57</td>
</tr>
<tr>
<td>4.2 Jointing system position</td>
<td>58</td>
</tr>
<tr>
<td>4.3 Stamping holes</td>
<td>59</td>
</tr>
<tr>
<td>4.4 Existing stamping holes at VP</td>
<td>60</td>
</tr>
<tr>
<td>4.5 Design proposal 1</td>
<td>61</td>
</tr>
</tbody>
</table>
4.6 Design proposal 1 (assembly) 61

4.7 Proposal 1 technical drawing 62

4.8 Design proposal 2 63

4.9 Design proposal 2 (assembly) 63

4.10 Proposal 2 technical drawing 64

4.11 Bolt and nut simulation 66

4.12 Assembly simulations - proposal 1 67

4.13 Assembly simulations - proposal 2 68

4.14 Bolt and nut simulation (time) 72

4.15 Simulation time - proposal 1 73

4.16 Simulation time - proposal 2 74

4.17 Stress result using nylon (P1) 76

4.18 Stress result using nylon (P2) 77
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.19</td>
<td>Stress result using ABS (P1)</td>
<td>78</td>
</tr>
<tr>
<td>4.20</td>
<td>Stress result using ABS (P2)</td>
<td>78</td>
</tr>
<tr>
<td>4.21</td>
<td>Final design - design proposal 2</td>
<td>83</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
<td></td>
</tr>
<tr>
<td>ABS</td>
<td>Acrylonitrile-butadiene-styrene</td>
<td></td>
</tr>
<tr>
<td>CAD</td>
<td>Computer-Aided Design</td>
<td></td>
</tr>
<tr>
<td>CAE</td>
<td>Computer Aided Engineering</td>
<td></td>
</tr>
<tr>
<td>DfA</td>
<td>Design for Assembly</td>
<td></td>
</tr>
<tr>
<td>DfM</td>
<td>Design for Manufacturing</td>
<td></td>
</tr>
<tr>
<td>DIY</td>
<td>Do It Yourself</td>
<td></td>
</tr>
<tr>
<td>FEA</td>
<td>Finite Element Analysis</td>
<td></td>
</tr>
<tr>
<td>FOS</td>
<td>Factor of Safety</td>
<td></td>
</tr>
<tr>
<td>FRIM</td>
<td>Forest Research Institute of Malaysia</td>
<td></td>
</tr>
<tr>
<td>MATRADE</td>
<td>Malaysian External Trade Development Cooperation</td>
<td></td>
</tr>
<tr>
<td>MDF</td>
<td>Medium Density Fiberboard</td>
<td></td>
</tr>
<tr>
<td>MFIC</td>
<td>Malaysian Furniture Industries Council</td>
<td></td>
</tr>
<tr>
<td>MFPC</td>
<td>Malaysian Furniture Promotion Council</td>
<td></td>
</tr>
<tr>
<td>MIDA</td>
<td>Malaysian Industrial Development Authority</td>
<td></td>
</tr>
<tr>
<td>MS Words XP</td>
<td>Microsoft Words Explorer</td>
<td></td>
</tr>
<tr>
<td>MTIB</td>
<td>Malaysian Timber Industrial Board</td>
<td></td>
</tr>
<tr>
<td>NM</td>
<td>Minimum number of part</td>
<td></td>
</tr>
<tr>
<td>OPS</td>
<td>Open Plan Office System</td>
<td></td>
</tr>
<tr>
<td>PA</td>
<td>Polyamide</td>
<td></td>
</tr>
<tr>
<td>PANCON</td>
<td>Panel Connection</td>
<td></td>
</tr>
<tr>
<td>PC</td>
<td>Polycarbonate</td>
<td></td>
</tr>
<tr>
<td>PDS</td>
<td>Product Design Specification</td>
<td></td>
</tr>
</tbody>
</table>
PE Polyethylene
PMMA Polymethylmethacrylate
POM Polyoxymethylene
PP Polypropylene
PS Polystyrene
PU Polyurethane
PVC Polyvinylchloride
R&D Research and Development
R1.2 Release 1.2
R2.4 Release 2.4
SIL Silicones
TM Total assembly time
UV Ultra Violet
VP Vertical pole