MOLECULAR CHARACTERISATION OF INFECTIOUS BURSAL DISEASE VIRUS ISOLATED IN IRAN FOR DEVELOPMENT OF AN ENZYME-LINKED IMMUNOSORBENT ASSAY BASED ON RECOMBINANT VPX PROTEIN

BY

SEYED DAVOOD HOSSEINI

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia in Fulfilment of Requirements for the Degree of Doctor of Philosophy

December 2005
DEDICATED with love and gratitude

to:

My dearest Father, Mother, Wife, Sisters, two lovely Daughters (Mohadeseh and Fatemeh) and son (Mahdi).

Who have always given me strength and courage with their co-operation, patience and prayer to carry-out this research.
Abstract of the thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirements for the degree of Doctor of Philosophy

MOLECULAR CHARACTERISATION OF INFECTIOUS BURSAL DISEASE VIRUS ISOLATED IN IRAN FOR DEVELOPMENT OF AN ENZYME-LINKED IMMUNOSORBENT ASSAY BASED ON RECOMBINANT VPX PROTEIN

By

Seyed Davood Hosseini

December 2005

Chairman: Professor Aini Ideris, PhD

Faculty: Veterinary Medicine

The acute form of infectious bursal disease (IBD) is considered as an economically significant disease among the poultry diseases reported in Iran. It was first reported as being caused by very virulent IBD virus (IBDV) based on conventional methods. Infectious bursal disease outbreaks are still being reported frequently, in spite of vaccination and sanitation measures which are the routine practices for the control of IBD in the country. Since there was no report available on the molecular characteristics of IBDV based on segment A in Iran, which is necessary for the establishment of proper control measures, it was important to characterise the antigenic and virulent properties of the strains prevalent in Iran.

Infected bursa of Fabricius were collected from chicken obtained from an unvaccinated farm in Iran. The chickens showed clinical signs of depression, anorexia, ruffled feathers, trembling, whitish or watery diarrhea and mortality.
Virus isolation was carried out in embryonated eggs and the isolated virus showed 96% mortality in 4 weeks-old specific pathogen free (SPF) chickens, which was typical of very virulent IBDV. The complete nucleotide sequences of segment A of the isolate, which code for the viral proteins (VPs), VP2, VP4, VP3, and VP5, was amplified by reverse transcriptase-polymerase chain reaction method, sequenced and compared with some published IBDV sequences. A total of 9 common amino acid substitutions, 3 at VP2, (222 Ala, 256 Ile and 294 Ile), 3 at VP4 (685 Asn/Ser, 715 Ser and 751 Asp), 2 at VP3 (990 Val and 1005 Ala) and 1 at VP5 (49 Arg) were found in the isolate as well as in other very virulent (vv) IBDV isolates. However, the Iranian isolate also demonstrated 8 unique amino acid substitutions of which 2 each were in VP2 and VP4, respectively, 3 in VP3 and 1 in VP5. Phylogenetic analysis indicated that the Iran isolate was closely related to vvIBDV isolates from Asian countries, however, it likely shares a common origin as other vv strains isolated from other parts of the world.

The characterised IBDV isolate (designated as SDH1) was subjected to expression in prokaryotic system. The VP2 and VPX genes were expressed in *Escherichia coli* system as a fusion protein with six-histidine tag. Protein bands with the expected molecular weight of 48KD and 51KD were detected by direct protein staining and Western blotting. Since most of the neutralizing epitopes are located on VP2 and VPX, the expressed VPX protein was considered as a suitable candidate antigen for the development of a serological test. However, instead of using whole virion as an antigen, this study focused on the use of recombinant VPX as the antigen for the
development of ELISA for the detection of IBDV specific antibody. The results showed that sera obtained from vaccinated broiler chickens reacted specifically using the developed ELISA, suggesting that the recombinant VPX protein is properly folded and expressed the neutralizing epitopes. In addition, when the developed ELISA technique was compared to a commercial ELISA kit from IDEXX, USA, which uses whole virus preparations as test antigen, it showed an excellent correlation value of $R^2=0.972$.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

Pencirian Molekul Virus Penyakit Bursa Berjangkit yang Diasingkan di Iran untuk Pembangunan Asai Imunoerap Berkaitan Enzim Berdasarkan Protein Rekombinan VPX

Oleh

Seyed Davood Hosseini

December 2005

Pengerusi: Profesor Aini Ideris, PhD
Fakulti: Perubatan Veterinar

Penyakit bursa berjangkit (IBD) akut dianggap antara penyakit ayam yang menjejaskan ekonomi pernah dilaporkan di Iran. Ianya pertama kali dilaporkan akibat jangkitan virus IBD (IBDV) sangat virulen berdasarkan kaedah konvensional. Walaupun pemvaksinan dan langkah kebersihan adalah amalan rutin untuk mengawal IBD dalam negara, wabak IBD kerap dilaporkan. Dengan ketiadaan laporan yang berlandaskan pencirian molekul segmen A IBDV di Iran, yang mana diperlukan bagi membangun langkah pergawalan, adalah sangat penting untuk mencirikan ciri antigenik dan virulen strain yang wujud di Iran.

Bursa Fabricius yang dijangkiti dikumpul dari ayam yang diperolehi dari ladang di Iran yang tidak mempraktikkan suntikan vaksin. Ayam tersebut menunjukkan tanda klinikal seperti tekanan, anoreksia, pelepah bulu kusut, menggigil, cirit birit cair atau berwarna putih, dan kematian. Pemencilan virus
dijalankan dalam telur berembrio dan virus yang diasingkan menunjukkan kadar kematian 96% dalam ayam bebas patogen spesifik (SPF) yang berumur 4 minggu, di mana ianya khusus untuk IBDV sangat virulen. Jujukan nukleotida lengkap segmen A yang mengkodkan protein virus (VPs), VP2, VP4, VP3 dan VP5 isolat tersebut diperbanyakkan melalui kaedah transkriptase membalik-tindak balas rantai polimerase, dijujuk dan dibandingkan dengan beberapa jujukan IBDV yang pernah dilaporkan. Sejumlah 9 asid amino yang biasa digantikan, 3 di VP2 (222 Ala, 256 Ile dan 294 Ile), 3 di VP4 (685 Asn/Ser, 715 Ser dan 751 Asp), 2 di VP3 (990 Val dan 1005 Ala) dan 1 at VP5 (49 Arg) dijumpai pada isolat tersebut dan juga isolat IBDV sangat virulen (vvIBDV) yang lain. Walau bagaimanapun, isolat Iran juga menunjukkan 8 penggantian asid amino yang unik di mana 2 di VP2 dan VP4, masing-masing, 3 di VP3 dan 1 di VP5. Analisis filogenetik menunjukkan isolat Iran berhubung rapat dengan isolat vvIBDV dari negara Asia, namun ia berkongsi sumber yang umum seperti mana strain vv yang pernah diasingkan dari bahagain lain di dunia.

Isolat IBDV yang dicirikan (dinamakan sebagai SDH1) digunakan bagi tujuan ekspresi dalam sistem prokariot. Gen VP2 dan VPX diekspres di sistem *Escherichia coli* sebagai protein gabungan dengan tag *six-histidine*. Jalur protein dengan berat molekul yang terjangka di antara 48kDa dan 51kDA dapat dikesan dengan pewarnaan protein terus dan sap Western. Oleh kerana kebanyakan epitop peneutralan terdapat pada VP2 dan VPX, protein VPX yang terekspres dianggap sebagai calon antigen yang sesuai untuk pembangunan satu ujian serologi. Walau bagaimanapun, kajian ini memberi
tumpuan terhadap penggunaan rekombinan VPX dan bukan mengenai penggunaan virion penuh sebagai antigen bagi membangunkan ELISA untuk mengesan antibodi khusus IBDV. Keputusan menunjukkan sera yang diambil daripada ayam pedaging yang disuntik vaksin bertindak secara khusus dengan ELISA yang dibangunkan, mencadangkan protein VPX rekombinan tersebut terbentuk dengan betul dan mengekspres epitop peneutralan. Tambahan pula, bila teknik ELISA yang dibangunkan tersebut dibandingkan dengan satu kit komersial ELISA daripada IDEXX, USA, yang menggunakan seluruh virus sebagai antigen ujian, ia menunjukkan korelasi yang cemerlang dengan nilai $R^2=0.972$.
ACKNOWLEDGMENTS

First of all thanks to

ALLAH, WHO IS “THE MOST BENEFICIENT, AND MERCIFUL”.

And then:

I would like to express my heartiest gratitude, respect and appreciation to Professor Dr Aini Ideris, chairperson of the supervisory committee for providing invaluable advice, support and encouragement throughout the study period.

I am pleased to express my respect, deepest sense and gratitude to Associate Professor Dr Abdul Rahman Omar, member of supervisory committee, Biologic Laboratory, for his constant guidance, sharing knowledge on molecular techniques that enabled me to accomplish my work.

Moreover, I would like to express my sincere thanks and appreciation to Professor Dr. Abdul Manaf Ali, member of supervisory committee, Faculty of Biotechnology and Biomolecular Sciences for his constructive suggestion, proper guidance throughout my study period.

I am also grateful to Associate Professor Dr. Mohd Hair Bejo for his friendly advice and comments and Dr Majid Eshaghi for his help in SDSPAG and nice comments. Special thanks also go to the staff in Biologics Lab, Puan Rodiah Husin and very nice friends Varma, Hosseinali Sassan, Broomand, Mohamad
Ali, Hossein Zulgarnain, Sheau Wei, Liling, Karuna, Siti, Wan, Zari, Haza, Fiza, Rose, Aini, May Ling, Mohamad Ghrici, and everybody for always being so willing to render assistance throughout the course of my study.
I certify that an Examination Committee met on 24th December 2005 to conduct the final examination of Seyed Davood Hosseini on his Doctor of Philosophy thesis entitled “Molecular Characterisation of Infectious Bursal Disease Virus Isolated in Iran for Development of an Enzyme-Linked Immunosorbent Assay Based on Recombinant VPX Protein” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follow:

Mohamed Shariff Mohamed Din, PhD
Professor
Faculty of Veterinary medicine
Universiti Putra Malaysia
(Chairman)

Mohd Hair Bejo, PhD
Professor
Faculty of Veterinary medicine
Universiti Putra Malaysia
(Internal Examiner)

Siti Suri Arshad, PhD
Professor
Faculty of Veterinary medicine
Universiti Putra Malaysia
(Internal Examiner)

Trevor Bagust, PhD
Professor
Faculty of Veterinary Science
University of Melbourne
(External Examiner)

GULAM RUSUL RAHMAT ALI, PhD
Professor/Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
This thesis submitted to the Senate of Universiti Putra Malaysia has been accepted as fulfilment of the requirements for the degree of Doctor of Philosophy. The members of the Supervisory Committee are as follows:

Aini Ideris, PhD
Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Chairman)

Abdul Manaf Ali, PhD
Professor
Faculty of Biotechnology and Biomolecular Science
Universiti Putra Malaysia
(Member)

Abdul Rahman Omar, PhD
Associate Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Member)

AINI IDERIS, PhD
Professor/Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

SEYED DAVOOD HOSSEINI

Date:
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>ix</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>xi</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xviii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xix</td>
</tr>
<tr>
<td>LIST OF PLATES</td>
<td>xxii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxiii</td>
</tr>
<tr>
<td>CHAPTER</td>
<td></td>
</tr>
<tr>
<td>I INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>II LITERATURE REVIEW</td>
<td>9</td>
</tr>
<tr>
<td>Infectious Bursal Disease (IBD)</td>
<td>9</td>
</tr>
<tr>
<td>Infectious Bursal Disease Virus (IBDV)</td>
<td>10</td>
</tr>
<tr>
<td>Viral Genome</td>
<td>12</td>
</tr>
<tr>
<td>Viral Proteins</td>
<td>13</td>
</tr>
<tr>
<td>Viral Replication (in vivo)</td>
<td>16</td>
</tr>
<tr>
<td>Viral Propagation (in vitro)</td>
<td>17</td>
</tr>
<tr>
<td>Transmission</td>
<td>19</td>
</tr>
<tr>
<td>Resistance to Chemical and Physical Agents</td>
<td>20</td>
</tr>
<tr>
<td>Incubation Period and Clinical Signs</td>
<td>21</td>
</tr>
<tr>
<td>Pathogenesis and Immunosuppression</td>
<td>23</td>
</tr>
<tr>
<td>Gross Lesions</td>
<td>29</td>
</tr>
<tr>
<td>Histopathology</td>
<td>32</td>
</tr>
<tr>
<td>Antigenic and Pathotypic Variation</td>
<td>33</td>
</tr>
<tr>
<td>Epidemiology of Infectious Bursal Disease</td>
<td>37</td>
</tr>
<tr>
<td>Diagnosis</td>
<td>39</td>
</tr>
<tr>
<td>Prevention and Control</td>
<td>48</td>
</tr>
<tr>
<td>Nucleotide and Amino acid Sequence Analysis</td>
<td>54</td>
</tr>
<tr>
<td>Phylogenetic Analysis</td>
<td>57</td>
</tr>
<tr>
<td>III MOLECULAR CHARACTERISATION OF INFECTOUS BURSAL DISEASE VIRUS ISOLATED IN IRAN</td>
<td>61</td>
</tr>
<tr>
<td>Introduction</td>
<td>61</td>
</tr>
<tr>
<td>Materials and Methods</td>
<td>65</td>
</tr>
<tr>
<td>Infected samples</td>
<td>65</td>
</tr>
<tr>
<td>Virus Propagation in Embryonated Specific Pathogen Free (SPF) eggs</td>
<td>65</td>
</tr>
<tr>
<td>Virus Replication in SPF chicken</td>
<td>66</td>
</tr>
<tr>
<td>Virus Purification</td>
<td>66</td>
</tr>
<tr>
<td>Transmission Electron Microscopy</td>
<td>67</td>
</tr>
<tr>
<td>Viral RNA Extraction</td>
<td>67</td>
</tr>
</tbody>
</table>
Transformation to Competent TOP 10F Cells 125
Screening of Transformed Colonies 126
Extraction of Recombinant Plasmids 127
Restriction Endonuclease Analysis of Positive Recombinant Plasmid 128
Sequencing of Recombinant Plasmids 128
Preparation of Glycerol Stock 129
Preparation of BL21(DE3)plysS Competent Cells 129
Transformation of Recombinant pRSET B into BL21(DE3)plysS 130
Pilot Expression 131
Detection of VP2 and VPX Proteins by SDS-PAGE 132
Detection of Expressed Proteins by Western Blot 133
Localisation of Recombinant VPX and VP2 Proteins in Induced Cells 135
Scale-up of VP2 and VPX Recombinant Protein 135
Purification of Recombinant Proteins 136

Results 138
Amplification of VP2 and VPX Genes 138
Cloning of VP2 and VPX into pRSET B Vector 139
PCR Screening of Recombinant Colonies 140
Restriction Endonuclease Analysis of Recombinant Plasmids 141
Sequencing of Recombinant Plasmids 142
Detection of Expressed Proteins in Pilot Optimization 145
Analysis of Purified Recombinant Proteins 147

Discussion 148

V ANTIGENIC PROPERTIES AND DIAGNOSTIC POTENTIAL OF INFECTIOUS BURSAL DISEASE VIRUS PROTEIN VPX EXPRESSED IN PROKARYOTIC SYSTEM 152

Introduction 152
Materials and Methods 155
Preparation VPX Gene 155
Construction of Recombinant pRSET B-VPX 155
Transformation of Recombinant pRSET B into E.coli BL21 (DE3)plysS 156
Protein Expression Analysis 156
Purification of Recombinant VPX Protein 157
Determination of Recombinant Lysate Protein Concentration 158
SDS-PAGE Detection 158
Western Blot Test 158
Enzyme-Linked Immunosorbent Assay (ELISA) 159
Optimisation of the ELISA Based on Lysate Recombinant VPX 159
Optimisation an ELISA Based on Purified Recombinant VPX protein 161
Standard Curve of ELISA Based on Lysate Recombinant