SHEAR STRENGTHENING OF REINFORCED CONCRETE BEAMS USING EXTERNALLY BONDED BI-DIRECTIONAL CARBON FIBRE REINFORCED POLYMER

By

J. JAYAPRAKASH

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirement for the Degree of Doctor of Philosophy

August 2006
Dedicated to
My Beloved Mother
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy

SHEAR STRENGTHENING OF REINFORCED CONCRETE BEAMS USING EXTERNALLY BONDED BI-DIRECTIONAL CARBON FIBRE REINFORCED POLYMER

By

J. JAYAPRAKASH

August 2006

Chairman: Professor Abdul Aziz Abdul Samad, PhD

Faculty: Engineering

Shear failure of Reinforced Concrete (RC) beams is catastrophic and could occur without any forewarning. Many existing reinforced concrete (RC) members are found to be deficient in shear strength and need to be repaired. Shear deficiencies in reinforced concrete beams may crop up due to many factors such as inadequate shear reinforcement, reduction in steel area due to corrosion, use of outdated design codes, increased service load, poor workmanship and design faults. The application of Carbon Fibre Reinforced Polymer Composite material, as an external reinforcement is a viable technology recently found to be worth for improving the structural performance of reinforced concrete structures.

This study was conducted to investigate the shear strengthening capacity and modes of failure of reinforced concrete beams using externally bonded bi-directional Carbon
Fibre Reinforced Polymer (CFRP) strip. To accomplish the objectives, an experimental program was conducted within laboratory environment where a specimen lot comprised of eighteen rectangular (18 Nos) beams and sixteen (16 Nos) T-beams were tested until failure. The specimens comprised of rectangular and T-beams of length 2980mm were fabricated and tested in the Structural Laboratory at Universiti Putra Malaysia. The rectangular beams were strengthened without any internal shear reinforcement but the T-beams were strengthened with internal shear reinforcement. The beams were classified into three categories: control, precracked/repai red and initially strengthened specimens. The variables investigated in this experimental program included (i) longitudinal reinforcement ratio, (ii) shear span to effective depth ratio, (iii) spacing of CFRP strip and (iv) orientation of CFRP strips. Test results showed that the externally bonded bi-directional Carbon Fibre Reinforced Polymer (CFRP) significantly enhances the shear enhancement of both the rectangular (without steel stirrups) and T-beam (with steel stirrups). The study also revealed that the contribution of externally bonded CFRP strips to the shear capacity was significantly influenced by the variables investigated.

A design equation was developed to compute the shear contribution of CFRP to the shear capacity of RC beams. The experimental results were compared with the existing models of Triantafillou, 1998; Khalifa 2002; and ACI 440, 2003 to verify the proposed design equation. The theoretical values calculated by the proposed model for rectangular beams without internal shear reinforcement showed good agreement with those of the T-beams with internal shear reinforcement. The study observed that the predicted results of the existing models by Khalifa (2002) and ACI 440 were slightly higher than that of the proposed one. However it was also observed that the model by
Triantafillou shows poor agreement in comparison to Khalifa (2002) and ACI 440 models. While the study contributed insights in terms of shear strength and modes of failure of reinforced concrete CFRP strengthened beams with respect to the variables such as shear span to effective depth ratio, longitudinal reinforcement ratio, spacing, and different orientations of CFRP strips, it developed a design equation and few recommendations.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doctor Falsafah

PENINGKATAN DAYA KEKUATAN REGANGAN PADA BINAAN KONKRIT YANG KUKUH MENGGUNAKAN IKATAN LUARAN BI-DIRECTIONAL CARBON FIBRE REINFORCED POLYMER

Oleh

J. JAYAPRAKASH

Ogos 2006

Pengerusi: Profesor Abdul Aziz Abdul Samad, PhD
Fakulti: Kejuruteraan

Kegagalan daya regangan pada binaan konkrit yang kukuh merupakan satu malapetaka dan boleh terjadi tanpa sebarang amaran awal. Terdapat banyak komponen binaan konkrit yang wujud kini perlu diperbaiki kerana kurang daya kekuatan regangan. Kekurangan kekuatan regangan ini boleh berlaku akibat beberapa faktor seperti pengukuhan kuasa regangan yang tidak mencukupi, bahagian besi atau keluli terhakis, penggunaan kod rekabentuk yang lama, penambahan beban servis, kekurangan kemahiran dan kesalahan rekabentuk. Penggunaan bahan Carbon Fibre Reinforced Polymer (CFRP) sebagai pengukuhan luaran adalah teknologi bernilai yang ditemui untuk mempertingkatkan kekuatan struktur binaan dan hayat bangunan.

Kajian ini telah dijalankan untuk menyelidik tahap kemampuan kekuatan regangan dan penyebab kegagalan binaan konkrit yang telah diperkuatkan menggunakan pendekatan ikatan luaran bi-directional Carbon Fibre Reinforced Polymer (CFRP). Bagi mencapai
ACKNOWLEDGEMENTS

I would like to express my utmost gratitude to my main supervisor Prof. Ir. Dr. Abdul Aziz Abdul Samad for his invaluable support, elegant guidance and encouragement throughout the period of research. He has been a great inspiration to me during these years. I must say that his care, dedication and planning for his students is remarkable. It is a privilege and pleasure to work with him. I am grateful to Prof. Dr. Ashrabov Anvar Abbasvoch for his assistance, fruitful ideas, guidance, motivation, encouragement and constructive comments. When I was pursuing the experimental work he assigned some his undergraduate students to work under my research project. It was indeed very helpful for me to continue the work without any interruption. I also wish to extend my earnest thanks to Prof. Ir. Abang Abdullah Abang Ali for his continuous support, and constructive comments. I would like to thank Dr. Febrin A. Ismail for his helpful suggestions and advice.

Thanks and acknowledgement to the following people who have contributed to the research and various stages. I also wish to thank Dr. Mohamed Saleh Jafer and Dr. Waleed A Thanoon for their support in using the laboratory. To my colleagues M.S. Raghu and Siti Maseroh and friends for sharing their research experience and views. In particular I should thank the undergraduate students, Goh Pei Wen, Norhalida Binti Remeli, Paul Joseph, Mokhtar Bin Mohamad, Chee Seong and Goh Hwa Woay for their help during testing. I am also grateful to the Sika, Kima Sdn. Bhd. for supplying FRP sheets and Sikadur 330 impregnation resin.
I appreciate the assistance of the technical staff of Structural Engineering Laboratory especially to Faizal, Osman and Mohd Halim Osman. The Support of IRPA Research Grant is gratefully acknowledged. Besides, I thank my friends at Univeristi Teknologi Malaysia for their moral support and encouragement.

Finally I am most thankful to all members of my family for their support and encouragement during my study at Malaysia, my beloved Mom, brothers, sisters, dad, uncle and grandma, a great aspiration, who continuously motivated me to work hard. I also must thank younger brother Siva for his creative and constructive criticism.

It is my pleasure to express my heartfelt appreciation to my beloved Brother and Mentor “Dr. L. Jawahar Nesan” for his relentless care, motivation, fruitful discussions, valuable advice, suggestions etc during my study. During the years of my research, there have been several ups and downs in my research, but he has always provided me enthusiasm and encouragement to overcome all obstacles. His patience, undying support and encouragement have enabled me to complete my PhD thesis. Special thanks to him for patiently proof-reading the draft of the text. Indeed it is very hard for me to express my earnest thanks within few lines because he is very much concerned about my research work and carrier development.

J. Jayaprakash
I certify that an Examination Committee has met on 14th August 2006 to conduct the final examination of J. Jayaprakash on his Doctor of Philosophy thesis entitled “Shear Strengthening of Reinforced Concrete Beams using Externally Bonded Bi-Directional Carbon Fibre Reinforced Polymer” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Salihudin Hassim
Lecturer
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Mohd Razali A. Kadir, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Internal Examiner)

Waleed A. M. Thanoon, PhD
Professor
Faculty of Engineering
Universiti Teknologi Petronas
(Internal Examiner)

Kypros Pilakoutas
Professor
Faculty of Engineering
The University of Sheffield, UK
(External Examiner)

HASANAH MOHD. GHAZALI, PhD
Professor/Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee are as follows:

Abdul Aziz Abdul Samad, PhD
Professor
Faculty of Civil and Environmental Engineering
Kolej Universiti Teknologi Tun Hussein Onn
(Chairman)

Abang Abdullah Abang Ali
Professor
Faculty of Engineering
Universiti Putra Malaysia
(Member)

Ashrabov Anvar Abbasvoch, DSc
Professor
Faculty of Civil Engineering
Tashkent Institute of Automobile
(Member)

AINI IDERIS, PhD
Professor/Dean
School of Graduate Studies
Universiti Putra Malaysia
Date:
DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations, which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

J. Jayaprakash

Date:
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>ix</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>xi</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xvii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xx</td>
</tr>
<tr>
<td>ACRYNOMS</td>
<td>xxxix</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION
1.1 General | 1 |
1.2 Significance of the Study | 5 |
1.3 Problem Statement | 6 |
1.4 Objectives of Research | 9 |
1.5 Scope of Research | 9 |
1.6 Flow of Investigation | 10 |
1.7 Organisation of the Thesis | 11 |

2 LITERATURE REVIEW
2.1 Introduction | 14 |
2.2 Previous Studies-Steel Plate Bonding Technique | 16 |
2.3 Historical Background of Fibre Reinforced Polymers (FRP) | 20 |
2.4 FRP Composites | 21 |
2.5 Fibre Reinforcements | 24 |
2.5.1 Strength and Stiffness of Glass Fibres (GFRP) | 25 |
2.5.2 Strength and Stiffness of Carbon Fibres (CFRP) | 26 |
2.5.3 Strength and Stiffness of Aramid Fibres (AFRP) | 27 |
2.6 Resin in Composite | 28 |
2.7 Advantages of FRP Plate Bonding | 29 |
2.8 Case Studies of FRP in Civil Infrastructure | 33 |
2.9 Shear Failure | 36 |
2.9.1 Beams without Web Reinforcement | 36 |
2.9.2 Shear Mechanism of RC Beam without Shear Reinforcement | 38 |
2.9.3 Shear Mechanism of RC Beam with Shear Reinforcement | 40 |
2.10 Strengthening of Reinforced Concrete Beams
 with Composite Fabrics in Shear 43
2.11 Results on Debonding Failure 56
2.12 Strengthening Strategies 57
 2.12.1 External Bonding Configuration 57
 2.12.2 Spacing FRP Reinforcement 59
2.13 Shear Strength of RC Beam Strengthened with FRP Reinforcement 60
2.14 Contribution of CFRP Reinforcement to Shear Capacity 61
 2.14.1 Chaallal et al Model 63
 2.14.2 Triantafillou Model 64
 2.14.3 Khalifa Model 65
 2.14.4 ACI 440 Format 69
 2.14.5 Spacing of FRP strips 72
2.15 Discussions 73

3 EXPERIMENTAL PROGRAM
3.1 Introduction 75
3.2 Experimental Investigation 76
 3.2.1 Quantification and Specimen Details 76
 3.2.2 Material and Fabrication 82
 3.2.3 Installation Procedure of Polymer Composites 90
 3.2.4 External Shear Strengthening Strategies (CFRP Strip) 96
 3.2.5 Test Set-up and Instrumentation 106
3.3 Summary 127

4 EXPERIMENTAL INVESTIGATION OF RC RECTANGULAR BEAMS
4.1 Introduction 128
4.2 Experimental Results of Rectangular Beams (Series B) 128
 4.2.1 Subgroup BT1 129
 4.2.2 Subgroup BS1 150
 4.2.3 Subgroup BT2 170
 4.2.4 Subgroup BS2 192
4.3 Discussions of Test Results for Rectangular Beams 217

5 EXPERIMENTAL INVESTIGATION OF RC T-BEAMS
5.1 Introduction 236
5.2 Experimental Results of T-Beams (Series T) 237
 5.2.1 Subgroup TT1 237
 5.2.2 Subgroup TS1 262
 5.2.3 Subgroup TT2 287
 5.2.4 Subgroup TS2 312
5.3 Discussions of Test Results for T-Beams 338

6 THEORETICAL INVESTIGATION OF RC CFRP STRENGTHENED BEAMS
6.1 Introduction 356
6.2 Shear Design of RC Strengthened Beams 357
6.2.1 Reduction Coefficient factor R_1 based on CFRP Rupture Model of failure 359
6.2.2 Reduction Coefficient factor R_2 based on CFRP Debonding Failure 363
6.2.3 Validation of Proposed Equation 366
6.3 Summary of Experimental Results 367
6.4 Comparison of Theoretical and Experimental Results 370
6.5 Recommendation for CFRP Strip Technique 384
6.6 Conclusions 384

7 SUMMARY, CONCLUSIONS AND RECOMMENDATIONS
7.1 Summary 386
7.2 Conclusions 388
7.3 Application of CFRP strip Technique 393
7.4 Recommendation for Future Research 394

BIBLIOGRAPHY AND REFERENCES 396
APPENDICES 404
BIODATA OF THE AUTHOR 428
LIST OF PUBLICATIONS 429
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Survey of Highway Bridges in United States</td>
</tr>
<tr>
<td>2.1</td>
<td>Characteristics of FRP sheet form of different fibres (Meier, 1995)</td>
</tr>
<tr>
<td>3.1</td>
<td>Details of test specimens for rectangular beam-series-B</td>
</tr>
<tr>
<td>3.2</td>
<td>Details of test specimens for T-beams-series-T</td>
</tr>
<tr>
<td>3.3</td>
<td>Material properties of internal steel reinforcement</td>
</tr>
<tr>
<td>3.4</td>
<td>Properties of epoxy resin (Based on Manufacture’s Manual)</td>
</tr>
<tr>
<td>3.5</td>
<td>Material properties of Carbon Fibre Fabric (Based on Manufacture’s Manual)</td>
</tr>
<tr>
<td>3.6</td>
<td>Summary of strengthening pattern of Subgroup BT1</td>
</tr>
<tr>
<td>3.7</td>
<td>Summary of strengthening pattern of Subgroup BS1</td>
</tr>
<tr>
<td>3.8</td>
<td>Summary of strengthening pattern of Subgroup BT2</td>
</tr>
<tr>
<td>3.9</td>
<td>Summary of strengthening pattern of Subgroup BS2</td>
</tr>
<tr>
<td>3.10</td>
<td>Summary of strengthening pattern of Subgroup TT1</td>
</tr>
<tr>
<td>3.11</td>
<td>Summary of strengthening pattern of Subgroup TS1</td>
</tr>
<tr>
<td>3.12</td>
<td>Summary of strengthening pattern of Subgroup TT2</td>
</tr>
<tr>
<td>3.13</td>
<td>Summary of strengthening pattern of Subgroup TS2</td>
</tr>
<tr>
<td>3.14(a)</td>
<td>The location of Demec studs or metal points for subgroups BT1</td>
</tr>
<tr>
<td>3.14(b)</td>
<td>The location of Demec studs or metal points for subgroups BS1</td>
</tr>
<tr>
<td>3.14(c)</td>
<td>The location of Demec studs or metal points for subgroups BT2</td>
</tr>
<tr>
<td>3.14(d)</td>
<td>The location of Demec studs or metal points for subgroups BS2</td>
</tr>
<tr>
<td>3.15(a)</td>
<td>The location of Demec studs or metal points for subgroups TT1 and TT2</td>
</tr>
</tbody>
</table>
3.15(b) The location of Demec studs or metal points for subgroups TS1 and TS2

4.1 Summary of test results for Subgroup BT1
4.2 Summary of test results for Subgroup BS1
4.3 Summary of test results for Subgroup BT2
4.4 Summary of test results for Subgroup BS2
4.5 Summary of experimental results for Subgroups BT1 and BS1
4.6 Summary of experimental results for Subgroups BT2 and BS2
4.7 Comparison experimental results with other researchers results from the available literature (Rectangular beams - No internal stirrups)
4.8 Summary of mid deflection values of the CFRP strengthened beams

5.1 Summary of test results for Subgroup TT1
5.2 Summary of test results for Subgroup TS1
5.3 Summary of test results for Subgroup TT2
5.4 Summary of test results for Subgroup TS2
5.5 Summary of experimental results for Subgroups TT1 and TS1
5.6 Summary of experimental results for Subgroups TT2 and TS2
5.7 Comparison experimental results with other researchers results from the available literature (T beams)
5.8 Summary of mid deflection values of the CFRP strengthened T-beams

6.1 Test results based on CFRP Rupture mode of failure
6.2 Test results based on CFRP Debonding mode of failure
6.3 Computed and experimental values of shear taken by CFRP reinforcement – Rectangular beams (series B)
6.4 Comparison of experimental and theoretical results of the shear capacity for rectangular beams (using proposed Equation)
6.5 Comparison of experimental and theoretical results of the shear capacity for rectangular beams (Using Triantafillou, 1998) 374

6.6 Comparison of experimental and theoretical results of the shear capacity for rectangular beams (Using Khalifa, 2002) 375

6.7 Comparison of experimental and theoretical results of the shear capacity for rectangular beams (Using ACI 440 Format, 2003) 376

6.8 Computed and experimental values of shear taken by CFRP reinforcement – T beams (series T) 379

6.9 Comparison of experimental and theoretical results of the shear capacity for T beams (using proposed Equation) 380

6.10 Comparison of experimental and theoretical results of the shear capacity for T beams (Using Triantafillou, 1998) 381

6.11 Comparison of experimental and theoretical results of the shear capacity for T beams (Using Khalifa, 2002) 382

6.12 Comparison of experimental and theoretical results of the shear capacity for T beams (Using ACI 440 Format, 2003) 383

B.1 Compressive strength of concrete cubes and Cylinders 408

C.1 Theoretical results of RC CFRP strengthened rectangular beams (Proposed Equation) 411

C.2 Theoretical results of RC CFRP strengthened T-beams (Proposed Equation) 413

C.3 Theoretical results of RC CFRP strengthened rectangular beams (Triantafillou model) 416

C.4 Theoretical results of RC CFRP strengthened T-beams (Triantafillou model) 418

C.5 Theoretical results of RC CFRP strengthened rectangular beams (Khalifa model) 421

C.6 Theoretical results of RC CFRP strengthened T-beams (Khalifa model) 422

C.7 Theoretical results of RC CFRP strengthened rectangular beams (ACI 440 Format) 426

C.8 Theoretical results of RC CFRP strengthened T-beams (ACI 440 Format) 427
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Examples of Polymer composites</td>
<td>5</td>
</tr>
<tr>
<td>1.2</td>
<td>Flow of investigation</td>
<td>11</td>
</tr>
<tr>
<td>2.1</td>
<td>Stress-strain relationships of Carbon (CFRP), Glass (GFRP), Aramid (AFRP) Fibre Reinforced Polymers and steel</td>
<td>23</td>
</tr>
<tr>
<td>2.2</td>
<td>Distribution of FRP in various fields (Source SPI composites Institute, 1999)</td>
<td>32</td>
</tr>
<tr>
<td>2.3</td>
<td>The growth of FRP from year 1970 to 2000 (SPI composites Institute, 1999)</td>
<td>33</td>
</tr>
<tr>
<td>2.4</td>
<td>The failure and crack pattern of beams under load</td>
<td>37</td>
</tr>
<tr>
<td>2.5</td>
<td>A typical location showing of critical combination of shear and moment</td>
<td>38</td>
</tr>
<tr>
<td>2.6</td>
<td>Free body diagram shear mechanism of concrete beam</td>
<td>39</td>
</tr>
<tr>
<td>2.7</td>
<td>Forces at diagonal crack in a beam with vertical stirrups</td>
<td>42</td>
</tr>
<tr>
<td>2.8</td>
<td>The wrapping system of T-Beam with four-point load (Chajes et al, 1995b)</td>
<td>47</td>
</tr>
<tr>
<td>2.9</td>
<td>The orientation of uni-directional fibre to the longitudinal axis of the beam (Täljsten, 2002)</td>
<td>49</td>
</tr>
<tr>
<td>2.10</td>
<td>Anchorage system of strengthened T-Beam (Khalifa and Nanni, 2000 and Raghu et al 2001)</td>
<td>50</td>
</tr>
<tr>
<td>2.11</td>
<td>Specimen strengthened with two plies (Khalifa and Nanni, 1999 and 2002)</td>
<td>53</td>
</tr>
<tr>
<td>2.12</td>
<td>Different strengthening strategies for wrapping FRP reinforcement on reinforced concrete rectangular cross section (a) FRP bonded on web sides only. (b) FRP jacketed as U Wraps. (c) FRP sheets wrapped around the cross section of beam (Raghu et al, 2001)</td>
<td>58</td>
</tr>
</tbody>
</table>
2.13 Different strengthening strategies for wrapping FRP reinforcement on reinforced concrete T-section (a) FRP bonded on web sides only (b) FRP jacketed as U Wraps. (c) FRP sheets wrapped around the cross section of beam (Raghu et al, 2001) 59

2.14 Various orientations of FRP sheets/strips (Raghu et al, 2001) 60

3.1 Quantification of samples for rectangular beams-series B 78

3.2 Quantification of samples for T-beams - series T 79

3.3 Casting preparation of T-Beam specimen 83

3.4 Reinforcement and cross-section details of Group BT 85

3.5 Reinforcement and cross-section details of Group BS 85

3.6 Reinforcement and cross-section details of Subgroup TS1 86

3.7 Reinforcement and cross-section details of Subgroup TS2 87

3.8 Reinforcement and cross section details of Subgroup TT1 88

3.9 Reinforcement and cross section details of Subgroup TT2 88

3.10 Surface preparation of concrete beam using mechanical grinder 91

3.11 A step by step preparation for the epoxy resin 92

3.12 Final mixing of component A and B using mixing blade 93

3.13 Levelling the surface and filling the small pores or holes with epoxy 94

3.14 Applying the first coat of epoxy paste on the marked location 94

3.15 The application of ribbed roller along the fibre direction 95

3.16 Strengthened reinforced concrete beam with CFRP strip 96

3.17 CFRP U-Strips-Spacing of strip: 150mm (Orientation: 0/90 Degree) for specimens BT1-1, BT1-1I and BS1-1 (a_r/d=2.5) 100

3.18 CFRP U-Strips-Spacing of strip: 200mm (Orientation: 0/90 Degree) for specimens BT1-2I and BS1-2 (a_r/d=2.5) 101

3.19 CFRP U-Strips-Spacing of strip: 150mm (Orientation: 0/90 Degree) for specimens BS2-1I, BT2-1 (a_r/d=4.0) 101
3.20 CFRP U-Strips-Spacing of strip: 200mm (Orientation: 0/90 Degree) for specimen BS2-1 (a_v/d=4.0) 101

3.21 CFRP Inclined L-Strips-Spacing of strip: 150mm (Orientation: 45/135 Degree) for specimens BS2-2, BS2-2I, BT2-2 and BT2-2I (a_v/d=4.0) 102

3.22 CFRP U-Strip with spacing of 150mm (orientation: 0/90 Degree) for specimens TT1-1, TT1-1I, TS1-1 and TS1-1I (a_v/d=2.5) 104

3.23 CFRP U-Strip with spacing of 200mm (orientation: 0/90 Degree) for specimens TT1-2 and TS1-2 (a_v/d=2.5) 104

3.24 CFRP U-Strip with spacing of 150mm (orientation: 0/90 Degree) for specimens TT2-1, TS2-1 and TS2-1I 106

3.25 CFRP inclined L-Strip with spacing of 150mm (orientation: 45/135 Degree) for specimens TT2-2, TT2-2I and TS2-2 106

3.26 Location of internal strain gauges along the longitudinal reinforcement for Series B 107

3.27 Location of strain gauges along the tensile reinforcement and steel stirrups (Subgroup TS1)-(a_v/d=2.5) 110

3.28 Location of strain gauges along the tensile reinforcement and steel stirrups (Subgroup TS2)-(a_v/d=4.0) 110

3.29 Location of strain gauges along the tensile reinforcement and steel stirrups (Subgroup TT1)-(a_v/d=2.5) 111

3.30 Location of strain gauges along the tensile reinforcement and steel stirrups (Subgroup TT2)-(a_v/d=4.0) 111

3.31 Experimental set up and location of strain gauges on the surface of CFRP strip and concrete surfaces and position of demec studs-CFRP U-Strips-Spacing Of strip: 150mm (Orientation: 0/90 Degree)-Specimens BT1-1, BT1-1I and BS1-1 113

3.32 Experimental step up and location of strain gauges on the surface of CFRP strip and concrete surfaces and position of demec studs CFRP U-Strips-Spacing of strip: 200mm (Orientation: 0/90 Degree)-Specimens BT1-2I and BS1-2 114
3.33 Experimental set up and location of strain gauges on the surface of CFRP strip and concrete surfaces and position of demec studs CFRP U-Strips-Spacing of strip: 150mm (Orientation: 0/90 Degree)-Specimens BS2-1I and BT2-1

3.34 Experimental set up and location of strain gauges on the surface of CFRP strip and concrete surfaces and position of demec studs CFRP U-Strips-Spacing of strip: 200mm (Orientation: 0/90 Degree)-Specimen BS2-1

3.35 Experimental set up and location of strain gauges on the surface of CFRP strip and concrete surfaces and position of demec studs - CFRP Inclined L-Strips-Spacing of strip: 150mm (Orientation: 45/135 Degree)-Specimens BS2-2, BS2-2I, and BT2-2I

3.36 Experimental set up and location of strain gauges on the surface of CFRP strip and concrete surfaces and position of demec studs - CFRP Inclined L-Strips-Spacing of strip: 150mm (Orientation: 45/135 Degree)-Specimen BT2-2

3.37 Experimental step up and location of strain gauges on the surface of CFRP strip and concrete surfaces and position of demec studs –CFRP U-Strip with Spacing of 150mm (orientation: 0/90 Degree) Specimens TT1-1, TS1-1 and TS1-1I

3.38 Experimental step up and location of strain gauges on the surface of CFRP strip and concrete surfaces and position of demec studs –CFRP U-Strip with Spacing of 150mm (orientation: 0/90 Degree) Specimens TT1-1I

3.39 Experimental step up and location of strain gauges on the surface of CFRP strip and concrete surfaces and position of demec studs –CFRP U-Strip with Spacing of 200mm (orientation: 0/90 Degree) Specimens TT1-2 and TS1-2

3.40 Experimental step up and location of strain gauges on the surface of CFRP strip and concrete surfaces and position of demec studs –CFRP U-Strip with Spacing of 150mm (orientation: 0/90 Degree) Specimens TT2-1, TS2-1 and TS2-1I

3.41 The side elevation of the strengthened beam TT1-1, TT1-1I, TS1-1, TS1-1I, TT1-2, TS1-2, TT2-1, TS2-1 and TS2-1I

3.42(a) Experimental step up and location of strain gauges on the surface of CFRP strip and concrete surfaces and position of demec studs – CFRP Inclined L-Strips (orientation: 45/135 Degree) Specimens TT2-2, TT2-2I and TS2-2

xxiii
3.42(b) The side elevation of the strengthened beams TT2-2, TT2-2I, and TS2-2

3.43 Experimental set up of rectangular beam with four point bending system (a_/d=2.5)

3.44 Experimental set up of T-Beam with three point bending system (a_/d=4.0)

4.1 Shear failure pattern for control specimen BT1aa

4.2 Shear-CFRP fracture failure pattern for precracked/repaired specimen BT1-1

4.3 Shear-CFRP fracture failure for initially strengthened specimen BT1-2I

4.4 Cracking and failure pattern of control beam BT1a

4.5 Cracking and failure pattern of control beam BT1aa

4.6(a) Cracking pattern of beam BT1-1 (Precracked phase)

4.6(b) Cracking and failure pattern of beam BT1-1 (Repaired phase)

4.7 Cracking and failure pattern of initially strengthened beam BT1-1I

4.8 Cracking and failure pattern of initially strengthened beam BT1-2I

4.9(a) Load versus mid deflection curve for control specimens BT1a and BT1aa

4.9(b) Load versus mid deflection curve for precracked/repaired specimen BT1-1

4.9(c) Load versus mid deflection curve for initially strengthened specimens BT1-1I and BT1-2I

4.9(d) Comparison of load versus mid deflection curve for subgroup BT1 (After strengthening)

4.10(a) Load versus strain in tensile steel for control specimen BT1aa

4.10(b) Load versus strain in tensile steel for precracked/repaired specimen BT1-1
4.10(c) Comparison of load versus strain in tensile steel for subgroup BT1 (After strengthening)
4.11(a) Load versus surface strain at mid span for control specimen BT1a
4.11(b) Load versus surface strain at mid span for precracked/repaired specimen BT1-1
4.11(c) Load versus surface strain at mid span for initially strengthened specimen BT1-1I
4.11(d) Load versus surface strain at mid span for initially strengthened specimen BT1-2I
4.12(a) Load versus surface strain in CFRP strip and concrete surface for precracked/repaired specimen BT1-1
4.12(b) Load versus surface strain in CFRP strip and concrete surface for initially strengthened specimen BT1-1I
4.12(c) Load versus surface strain in CFRP strip and concrete surface for initially strengthened specimen BT1-2I
4.13 Shear failure pattern for control specimen BS1a (Back face)
4.14 Shear-CFRP fracture failure for precracked/repaired specimen BS1-1
4.15 Shear-CFRP fracture failure for precracked/repaired specimen BS1-2
4.16 Cracking and failure pattern of control beam BS1a
4.17 Cracking and failure pattern of control beam BS1aa
4.18(a) Cracking pattern of beam BS1-1 (Precracked phase)
4.18(b) Cracking and failure pattern of beam BS1-1 (Repaired phase)
4.19(a) Cracking pattern of beam BS1-2 (Precracked phase)
4.19(b) Cracking and failure pattern of beam BS1-2 (Repaired phase)
4.20(a) Load versus mid deflection curve for control specimens BS1a and BS1aa
4.20(b) Load versus mid deflection curve for precracked/repaired specimen BS1-1
4.20(c) Load versus mid deflection curve for precracked/repaired specimen BS1-2

4.20(d) Comparison of load versus mid deflection curve for subgroup BS1 (After strengthening)

4.21(a) Load versus strain in tensile steel for control specimen BS1a

4.21(b) Load versus strain in tensile steel for control specimen BS1aa

4.21(c) Load versus strain in tensile steel for precracked/repaired specimen BS1-1

4.21(d) Load versus strain in tensile steel for precracked/repaired specimen BS1-2

4.21(e) Comparison of load versus strain in tensile reinforcement for subgroup BS1 (After strengthening)

4.22(a) Load versus surface strain at mid span for control specimen BS1a

4.22(b) Load versus surface strain at mid span for control specimen BS1aa

4.22(c) Load versus surface strain at mid span for precracked/repaired specimen BS1-1

4.22(d) Load versus surface strain at mid span for precracked/repaired specimen BS1-2

4.23(a) Load versus surface strain in CFRP strip and concrete surface for precracked/repaired specimen BS1-1

4.23(b) Load versus surface strain in CFRP strip and concrete surface for precracked/repaired specimen BS1-2

4.24 Shear failure pattern for control specimen BT2a (Back face)

4.25 Shear-CFRP fracture failure for precracked/repaired specimen BT2-1 (Back face)

4.26 Shear-CFRP fracture failure for precracked/repaired specimen BT2-2

4.27 Shear-CFRP fracture failure for initially strengthened specimen BT2-2I

4.28 Cracking and failure pattern of control beam BT2a

4.29(a) Cracking pattern of beam BT2-1 (Precracked phase)
4.29(b) Cracking and failure pattern of beam BT2-1 (Repaired phase) 177
4.30(a) Cracking pattern of beam BT2-2 (Precracked phase) 177
4.30(b) Cracking and failure pattern of beam BT2-2 (Repaired phase) 177
4.31 Cracking and failure pattern of initially strengthened beam BT2-2I 178
4.32(a) Load versus mid deflection curve for control specimen BT2a 179
4.32(b) Load versus mid deflection curve for precracked/repaired specimen BT2-1 180
4.32(c) Load versus mid deflection curve for precracked/repaired specimen BT2-2 180
4.32(d) Load versus mid deflection curve for initially strengthened specimen BT2-2I 181
4.32(e) Comparison of load versus mid deflection curve for subgroup BT2 (After strengthening) 181
4.33(a) Load versus strain in tensile steel for control specimen BT2a 183
4.33(b) Load versus strain in tensile steel for precracked/repaired specimen BT2-1 184
4.33(c) Load versus strain in tensile steel for precracked/repaired specimen BT2-2 184
4.33(d) Comparison of load versus strain in tensile steel for subgroup BT2 (After strengthening) 185
4.34(a) Load versus surface strain at mid span for control specimen BT2a 186
4.34(b) Load versus surface strain at mid span for precracked/repaired specimen BT2-1 187
4.34(c) Load versus surface strain at mid span for precracked/repaired specimen BT2-2 187
4.34(d) Load versus surface strain at mid span for initially strengthened specimen BT2-2I 188
4.35(a) Load versus surface strain in CFRP strip and concrete surface for precracked/repaired specimen BT2-1 190
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.35(b)</td>
<td>Load versus surface strain in CFRP strip and concrete surface for precracked/repaired specimen BT2-2</td>
<td>191</td>
</tr>
<tr>
<td>4.35(c)</td>
<td>Load versus surface strain in CFRP strip and concrete surface for initially strengthened specimen BT2-2I</td>
<td>191</td>
</tr>
<tr>
<td>4.36</td>
<td>Flexural failure pattern for precracked/repaired specimen BS2-1</td>
<td>193</td>
</tr>
<tr>
<td>4.37</td>
<td>Flexural failure pattern for initially strengthened specimen BS2-2I</td>
<td>195</td>
</tr>
<tr>
<td>4.38</td>
<td>Flexural failure pattern for initially strengthened specimen BS2-1I</td>
<td>195</td>
</tr>
<tr>
<td>4.39</td>
<td>Cracking and failure pattern of control beam BS2a</td>
<td>198</td>
</tr>
<tr>
<td>4.40(a)</td>
<td>Cracking pattern of beam BS2-1 (Precracked phase)</td>
<td>198</td>
</tr>
<tr>
<td>4.40(b)</td>
<td>Cracking and failure pattern of beam BS2-1 (Repaired phase)</td>
<td>199</td>
</tr>
<tr>
<td>4.41(a)</td>
<td>Cracking pattern of beam BS2-2 (Precracked phase)</td>
<td>199</td>
</tr>
<tr>
<td>4.41(b)</td>
<td>Cracking and failure pattern of beam BS2-2 (Repaired phase)</td>
<td>199</td>
</tr>
<tr>
<td>4.42</td>
<td>Cracking and failure pattern of initially strengthened beam BS2-2I</td>
<td>200</td>
</tr>
<tr>
<td>4.43</td>
<td>Cracking and failure pattern of initially strengthened beam BS2-1I</td>
<td>200</td>
</tr>
<tr>
<td>4.44(a)</td>
<td>Load versus mid deflection curve for control specimen BS2a</td>
<td>201</td>
</tr>
<tr>
<td>4.44(b)</td>
<td>Load versus mid deflection curve for precracked/repaired specimen BS2-1</td>
<td>202</td>
</tr>
<tr>
<td>4.44(c)</td>
<td>Load versus mid deflection curve for precracked/repaired specimen BS2-2</td>
<td>202</td>
</tr>
<tr>
<td>4.44(d)</td>
<td>Load versus mid deflection curve for initially strengthened specimens BS2-1I (spacing of CFRP strip=150mm) and BS2-2I (spacing of CFRP strip 150mm)</td>
<td>203</td>
</tr>
<tr>
<td>4.44(e)</td>
<td>Comparison of load versus mid deflection for subgroup BS2 (After strengthening)</td>
<td>203</td>
</tr>
<tr>
<td>4.45(a)</td>
<td>Load versus strain in tensile steel for control specimen BS2a</td>
<td>205</td>
</tr>
<tr>
<td>4.45(b)</td>
<td>Load versus strain in tensile steel for precracked/repaired specimen BS2-1</td>
<td>205</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>4.45(c)</td>
<td>Load versus strain in tensile steel for precracked/repaired specimen BS2-2</td>
<td>206</td>
</tr>
<tr>
<td>4.45(d)</td>
<td>Comparison of load versus strain in tensile steel for subgroup BS2 (After strengthening)</td>
<td>206</td>
</tr>
<tr>
<td>4.46(a)</td>
<td>Load versus surface strain at mid span for control specimen BS2a</td>
<td>208</td>
</tr>
<tr>
<td>4.46(b)</td>
<td>Load versus surface strain at mid span for precracked/repaired specimen BS2-1 (CFRP strip spacing of 200mm c/c)</td>
<td>208</td>
</tr>
<tr>
<td>4.46(c)</td>
<td>Load versus surface strain at mid span for precracked/repaired specimen BS2-2</td>
<td>209</td>
</tr>
<tr>
<td>4.46(d)</td>
<td>Load versus surface strain at mid span for initially strengthened specimen BS2-2I</td>
<td>209</td>
</tr>
<tr>
<td>4.46(e)</td>
<td>Load versus surface strain at mid span for initially strengthened specimen BS2-1I</td>
<td>210</td>
</tr>
<tr>
<td>4.47(a)</td>
<td>Load versus surface strain in CFRP strip for precracked/repaired specimen BS2-1 (spacing of CFRP U-strip=200mm c/c)</td>
<td>212</td>
</tr>
<tr>
<td>4.47(b)</td>
<td>Load versus surface strain in CFRP strip and concrete surface for precracked/repaired specimen BS2-2</td>
<td>213</td>
</tr>
<tr>
<td>4.47(c)</td>
<td>Load versus surface strain in CFRP strip and concrete surface for initially strengthened specimen BS2-2I</td>
<td>213</td>
</tr>
<tr>
<td>4.47(d)</td>
<td>Load versus surface strain in CFRP strip and concrete surface for initially strengthened specimen BS2-1I (spacing of CFRP U-strip=150mm c/c)</td>
<td>214</td>
</tr>
<tr>
<td>4.48(a)</td>
<td>Ultimate load versus tensile reinforcement ratio of the precracked/repaired and initially strengthened beams in subgroups BT1 & BS1</td>
<td>222</td>
</tr>
<tr>
<td>4.48(b)</td>
<td>Ultimate load versus tensile reinforcement ratio of the precracked/repaired and initially strengthened beams in subgroups BT2 & BS2</td>
<td>222</td>
</tr>
<tr>
<td>4.49</td>
<td>Shear enhancement versus spacing of CFRP strips of the precracked/repaired and initially strengthened beams in subgroups BT1 and BS1</td>
<td>223</td>
</tr>
</tbody>
</table>
4.50(a) Comparison of ultimate capacity for specimens oriented with vertical (0/90 degree) and inclined (45/135 degree) CFRP strips
4.50(b) Shear enhancement versus reinforcement ratio for specimens with both the vertical (0/90 degree) and inclined (45/135 degree) orientation of CFRP strips
4.51(a) Ultimate load versus shear span to effective depth ratio for subgroups BT1 & BT2 (ρ=1.69%)
4.51(b) Ultimate load versus shear span to effective depth ratio for subgroups BS1 & BS2 (ρ=1.08%)
4.51(c) Comparison of contribution of CFRP reinforcement of specimen in subgroup BT1 & BT2
4.51(d) Comparison of contribution of CFRP reinforcement of specimen in subgroup BS1 & BS2
4.52(a) Comparison of load versus mid deflection curve for subgroups BT1 and BS1
4.52(b) Comparison of load versus mid deflection curve for subgroups BT2 and BS2
4.53(a) Load versus tensile strain at near support of specimens in subgroups BT1 and BS1
4.53(b) Load versus tensile strain at mid span of specimens in subgroups BT1 and BS1
4.53(c) Load versus tensile strain at near support of specimens in subgroups BT2 and BS2
4.53(d) Load versus tensile strain at mid span of specimens in subgroups BT2 and BS2
5.1 Shear failure pattern for control specimen TT1a
5.2 Flexural failure pattern for precracked/repaired specimen TT1-2
5.3 Flexural failure pattern for initially strengthened specimen TT1-1I (Rear face)
5.4 Cracking and failure pattern of control beam TT1a 244
5.5(a) Cracking pattern of beam TT1-1 (Precracked phase) 244
5.5(b) Cracking and failure pattern of beam TT1-1 (Repaired phase) 244
5.6(a) Cracking pattern of beam TT1-2 (Precracked phase) 245
5.6(b) Cracking and failure pattern of beam TT1-2 (Repaired phase) 245
5.7 Cracking and failure pattern of initially strengthened beam TT1-1I (front face) 245
5.8(a) Load versus mid deflection curve for control specimen TT1a 247
5.8(b) Load versus mid deflection curve for precracked/repaired specimen TT1-1 247
5.8(c) Load versus mid deflection curve for precracked/repaired specimen TT1-2 248
5.8(d) Load versus mid deflection curve for initially strengthened specimen TT1-1I 248
5.8(e) Comparison of load versus mid deflection curve for subgroup TT1 (After strengthening) 249
5.9(a) Load versus strain in tensile steel for control specimen TT1a 250
5.9(b) Load versus strain in tensile steel for precracked/repaired specimen TT1-1 251
5.9(c) Load versus strain in tensile steel for precracked/repaired specimen TT1-2 251
5.9(d) Comparison of load versus strain in tensile steel for subgroup TT1 (After strengthening) 252
5.10(a) Load versus strain in steel stirrups for control specimen TT1a 254
5.10(b) Load versus strain in steel stirrups for precracked/repaired specimen TT1-1 254
5.10(c) Load versus strain in steel stirrups for precracked/repaired specimen TT1-2 255
5.10(d) Load versus strain in steel stirrups for initially strengthened specimen TT1-II

5.10(e) Comparison of load versus strain in steel stirrups for subgroup TT1 (After strengthening)

5.11(a) Load versus surface strain at mid span for control specimen TT1a

5.11(b) Load versus surface strain at mid span for precracked/repaired specimen TT1-1

5.11(c) Load versus surface strain at mid span for precracked/repaired specimen TT1-2

5.11(d) Load versus surface strain at mid span for initially strengthened specimen TT1-II

5.12(a) Load versus strain in the CFRP strip and concrete surface for precracked/repaired specimen TT1-1

5.12(b) Load versus strain in the CFRP strip and concrete surface for initially strengthened specimen TT1-II

5.13 Shear failure pattern for control specimen TS1a

5.14 Flexural failure pattern for precracked/repaired specimen TS1-2

5.15 Flexural failure pattern for initially strengthened specimen TS1-1I

5.16 Cracking and failure pattern of control beam TS1a

5.17(a) Cracking pattern of beam TS1-1 (Precracked phase)

5.17(b) Cracking and failure pattern of beam TS1-1 (Repaired phase)

5.18(a) Cracking pattern of beam TS1-2 (Precracked phase)

5.18(b) Cracking and failure pattern of beam TS1-2 (Repaired phase)

5.19 Cracking and failure pattern of initially strengthened beam TS1-1I

5.20(a) Load versus mid deflection curve for control specimen TS1a

5.20(b) Load versus mid deflection curve for precracked/repaired specimen TS1-1
5.20(c) Load versus mid deflection curve for precracked/repaired specimen TS1-2 272
5.20(d) Load versus mid deflection curve for initially strengthened specimen TS1-I 272
5.20(e) Comparison of load versus mid deflection curve for subgroup TS1 (After strengthening) 273
5.21(a) Load versus strain in tensile steel for control specimen TS1a 274
5.21(b) Load versus strain in tensile steel for precracked/repaired specimen TS1-1 275
5.21(c) Load versus strain in tensile steel for precracked/repaired specimen TS1-2 275
5.21(d) Comparison of load versus strain in tensile steel for subgroup TS1 (After strengthening) 276
5.22(a) Load versus strain in steel stirrups for control specimen TS1a 278
5.22(b) Load versus strain in steel stirrups for precracked/repaired specimen TS1-1 278
5.22(c) Load versus strain in steel stirrups for precracked/repaired specimen TS1-2 279
5.22(d) Load versus strain in steel stirrups for initially strengthened specimen TS1-I 279
5.22(e) Comparison of load versus strain in steel stirrups for subgroup TS1 (After strengthening) 280
5.23(a) Load versus surface strain at mid span for control specimen TS1a 281
5.23(b) Load versus surface strain at mid span for precracked/repaired specimen TS1-1 282
5.23(c) Load versus surface strain at mid span for precracked/repaired specimen TS1-2 282
5.23(d) Load versus surface strain at mid span for initially strengthened specimen TS1-I 283
5.24(a) Load versus strain in CFRP strip and concrete surface for precracked/repaired specimen TS1-1 285
5.24(b) Load versus strain in CFRP strip and concrete surface for precracked/repaired specimen TS1-2

5.24(c) Load versus strain in CFRP strip and concrete surface for initially strengthened specimen TS1-1I

5.25 Flexural failure pattern for precracked/repaired specimen TT2-1

5.26 Flexural failure pattern for initially strengthened specimen TT2-2I

5.27 Cracking and failure pattern of control beam TT2a

5.28(a) Cracking pattern of beam TT2-1 (Precracked phase)

5.28(b) Cracking and failure pattern of beam TT2-1 (Repaired phase)

5.29(a) Cracking pattern of beam TT2-2 (Precracked phase)

5.29(b) Cracking and failure pattern of beam TT2-2 (Repaired phase)

5.30 Cracking and failure pattern of initially repaired beam TT2-2I

5.31(a) Load versus mid deflection curve for control specimen TT2a

5.31(b) Load versus mid deflection curve for precracked/repaired specimen TT2-1

5.31(c) Load versus mid deflection curve for precracked/repaired specimen TT2-2

5.31(d) Load versus mid deflection curve for initially strengthened specimen TT2-2I

5.31(e) Comparison of load versus mid deflection curve for subgroup TT2 (After strengthening)

5.32(a) Load versus strain in tensile steel for control specimen TT2a

5.32(b) Load versus strain in tensile steel for precracked/repaired specimen TT2-1

5.32(c) Load versus strain in tensile steel for precracked/repaired specimen TT2-2

5.32(d) Comparison of load versus strain in tensile steel for subgroup TT2 (After strengthening)
5.33(a) Load versus strain in steel stirrups for control specimen TT2a 303
5.33(b) Load versus strain in steel stirrups for precracked/repaired specimen TT2-1 303
5.33(c) Load versus strain in steel stirrups for precracked/repaired specimen TT2-2 304
5.33(d) Load versus strain in steel stirrups for initially strengthened specimen TT2-2I 304
5.33(e) Comparison of load versus strain in steel stirrups for subgroup TT2 (After strengthening) 305
5.34(a) Load versus surface strain at mid span for control specimen TT2a 306
5.34(b) Load versus surface strain at mid span for precracked/repaired specimen TT2-1 307
5.34(c) Load versus surface strain at mid span for precracked/repaired specimen TT2-2 307
5.34(d) Load versus surface strain at mid span for initially strengthened specimen TT2-2I 308
5.35(a) Load versus strain in CFRP strip and concrete surface for precracked/repaired specimen TT2-1 310
5.35(b) Load versus strain in CFRP strip and concrete surface for precracked/repaired specimen TT2-2 311
5.35(c) Load versus strain in CFRP strip and concrete surface for initially strengthened specimen TT2-2I 311
5.36 Flexural failure pattern for precracked/repaired specimen TS2-1 313
5.37 Flexural failure pattern for precracked/repaired specimen TS2-2 314
5.38 Flexural failure pattern for initially strengthened specimen TS2-2I 315
5.39 Cracking and failure pattern of control beam TS2a 317
5.40(a) Cracking pattern of beam TS2-1 (Precracked phase) 317
5.40(b) Cracking and failure pattern of beam TS2-1 (Repaired phase) 318
5.41(a) Cracking pattern of beam TS2-2 (Precracked phase) 318
5.41(b) Cracking and failure pattern of beam TS2-2 (Repaired phase) 318
5.42 Cracking and failure pattern of initially strengthened beam TS2-1I 319
5.43(a) Load versus mid deflection curve for control specimen TS2a 320
5.43(b) Load versus mid deflection curve for precracked/repaired specimen TS2-1 320
5.43(c) Load versus mid deflection curve for precracked/repaired specimen TS2-2 321
5.43(d) Load versus mid deflection curve for initially strengthened specimen TS2-1I 321
5.43(e) Comparison of load versus mid deflection curve for subgroup TS2 (After strengthening) 322
5.44(a) Load versus strain in tensile steel for control specimen TS2a 324
5.44(b) Load versus strain in tensile steel for precracked/repaired specimen TS2-1 324
5.44(c) Load versus strain in tensile steel for precracked/repaired specimen TS2-2 325
5.44(d) Comparison of load versus strain in tensile steel for subgroup TS2 (After strengthening) 325
5.45(a) Load versus strain in steel stirrups for control specimen TS2a 327
5.45(b) Load versus strain in steel stirrups for precracked/repaired specimen TS2-1 328
5.45(c) Load versus strain in steel stirrups for precracked/repaired specimen TS2-2 328
5.45(d) Load versus strain in steel stirrups for initially strengthened specimen TS2-1I 329
5.45(e) Comparison of load versus strain in steel stirrups for subgroup TS2 (After strengthening) 329
5.46(a) Load versus surface strain at mid span for control specimen TS2a 331
5.46(b) Load versus surface strain at mid span for precracked/repaired specimen TS2-1 331
5.46(c) Load versus surface strain at mid span for precracked/repaired specimen TS2-2
5.46(d) Load versus surface strain at mid span for initially strengthened specimen TS2-1I
5.47(a) Load versus strain in the CFRP strip and concrete surface for precracked/repaired specimen TS2-1
5.47(b) Load versus strain in the CFRP strip and concrete surface for precracked/repaired specimen TS2-2
5.47(c) Load versus strain in the CFRP strip and concrete surface for initially strengthened specimen TS2-1I
5.48 Comparison of ultimate shear capacity for specimens oriented with vertical (0/90 degree) and inclined (45/135 degree) CFRP strips
5.49 Shear enhancement of the CFRP strengthened beams in subgroups TT1 and TS1 by varying the spacing of strips
5.50(a) Ultimate load versus tensile reinforcement ratio of the precracked/repaired and initially strengthened beams in subgroups TT1 & TS1
5.50(b) Ultimate load versus tensile reinforcement ratio of the precracked/repaired and initially strengthened beams in subgroups TT2 & TS2
5.51(a) Ultimate load versus shear span to effective depth ratio for subgroups TT1 & TT2 (ρ=1.69)
5.51(b) Ultimate load versus shear span to effective depth ratio for subgroups subgroups TS1 & TS2 (ρ=1.08%)
5.52(a) Load versus mid deflection of specimens in subgroups TT1 and TS1
5.52(b) Load versus mid deflection of specimens in subgroups TT2 and TS2
5.53(a) Load versus tensile strain near support of specimens in subgroups TT1 and TS1
5.53(b) Load versus tensile strain at mid span of specimens in subgroups TT1 and TS1
5.53(c) Load versus tensile strain near support of specimens in subgroups TT2 and TS2

5.53(d) Load versus tensile strain at mid span of specimens in subgroups TT2 and TS2

6.1 Strain reduction factor \(R = \frac{\varepsilon_{f_e}}{\varepsilon_{f_u}} \), in terms of \(\rho_f E_f \), only based on test results of CFRP rupture

6.2 Strain reduction factor \(R = \frac{\varepsilon_{f_e}}{\varepsilon_{f_u}} \), in terms of \(\rho_f E_f f'_c \), only based on test results of debonding

6.3 Comparison of experimental results with predicted values using proposed equation of the CFRP strengthened beam

6.4 Experimental results of control, precracked/repaired and initially strengthened rectangular beams (Series B)

6.5 Experimental results of control, precracked/repaired and initially strengthened T beams (Series T)

6.6 Comparison of shear contribution of experimental results with theoretical values of precracked/repaired and initially strengthened rectangular beams (Series B)

6.7 Comparison of shear contribution of experimental results with theoretical values of precracked/repaired and initially strengthened T-beams (series-T)
ACRYNOMS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_v</td>
<td>Shear span</td>
</tr>
<tr>
<td>A_v</td>
<td>Area of internal shear reinforcement within a distance s</td>
</tr>
<tr>
<td>A_s</td>
<td>Area of tensile reinforcement</td>
</tr>
<tr>
<td>A_f</td>
<td>Area of CFRP reinforcement $= 2nt_fw_f$</td>
</tr>
<tr>
<td>f'_{c}</td>
<td>Concrete cylinder compressive strength of concrete</td>
</tr>
<tr>
<td>b_w</td>
<td>Width of beam cross section</td>
</tr>
<tr>
<td>d</td>
<td>Effective depth of beam</td>
</tr>
<tr>
<td>d_f</td>
<td>Effective depth of the FRP shear reinforcement (usually equals to d for rectangular cross section and $d-t_s$ for T-section)</td>
</tr>
<tr>
<td>E_f</td>
<td>Elastic modulus of FRP</td>
</tr>
<tr>
<td>f_{ce}</td>
<td>Effective average stress in the FRP sheet at ultimate</td>
</tr>
<tr>
<td>f_{tu}</td>
<td>Tensile strength of FRP</td>
</tr>
<tr>
<td>f_y</td>
<td>Yield strength of steel reinforcement</td>
</tr>
<tr>
<td>k_v</td>
<td>Bond reduction coefficient relies on the modification factor k_1 (account for concrete strength); k_2 (account for type of wrapping scheme)</td>
</tr>
<tr>
<td>L_{eff} or L_e</td>
<td>Effective bond length</td>
</tr>
<tr>
<td>R</td>
<td>$(R_1, R_2, \text{ and } R_3)$ reduction coefficient,</td>
</tr>
<tr>
<td>M_u</td>
<td>Factored bending moment at the section</td>
</tr>
<tr>
<td>s</td>
<td>Spacing of internal shear reinforcement</td>
</tr>
<tr>
<td>s_f</td>
<td>Spacing of FRP strip</td>
</tr>
<tr>
<td>$s_{f,max}$</td>
<td>Maximum spacing of FRP strip</td>
</tr>
<tr>
<td>t_f</td>
<td>Thickness of FRP strip</td>
</tr>
</tbody>
</table>
V_c Nominal shear strength provided by concrete

V_f Nominal shear strength provided by FRP shear reinforcement

V_n Nominal shear strength

V_s Nominal shear strength provided by steel stirrups

V_u Factored shear force at the section

w_f Width of FRP strip

w_{fe} Effective width of FRP

α Angle of inclination of internal shear reinforcement

β Angle between principal fibre orientation and longitudinal axis of the beam

γ_f Partial safety factor for FRP in uniaxial tension (taken 1.15 for CFRP)

ψ or ψ_f Reduction factor applied to the shear contribution of the FRP

ϕ_f Material reduction factor for the FRP (0.8)

ε_{fe} Effective strain of FRP at failure

ε_{fu} or ε_{fu}^* Ultimate tensile strain of FRP.

ε_{cu} Ultimate vertical strain of concrete

ρ Ratio of longitudinal tensile reinforcement

ρ_f FRP fraction area = $\frac{(2nt_f b_w)(w_f s_f)}{M_1}$

AvgM1/M2-Average strain of M1 and M2

AvgM3/M2-Average strain of M1 and M2

AvgS1a/S1b-Average strain of S1a and S1b

AvgS2a/S2b-Average strain of S2a and S2b

AvgS3a/S3b-Average strain of S3a and S3b