TRAFFIC BALANCING METHOD IN SHORTEST PATH ROUTING

MAKAREM MOHAMED ABDULQADER BAMATRAF

DOCTOR OF PHILOSOPHY UNIVERSITI PUTRA MALAYSIA

2007

TRAFFIC BALANCING METHOD IN SHORTEST PATH ROUTING

By

MAKAREM MOHAMED ABDULQADER BAMATRAF

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

March 2007

DEDICATION

Dedicated to my parents, to my wife, to my kids, and to all my brothers and sisters. Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirements for the degree of Doctor of Philosophy

TRAFFIC BALANCING METHOD IN SHORTEST PATH ROUTING

By

MAKAREM MOHAMED ABDULQADER BAMATRAF

March 2007

Chairman: Associate Professor Mohamed Othman, PhD

Faculty: Computer Science and Information Technology

Open Shortest Path First (OSPF) is the most commonly used intra-domain routing protocol. OSPF routes traffic flows along shortest paths and splits the load evenly at nodes where several outgoing links are on the shortest paths to the same destination. Shortest paths are defined based on a weight value assigned to each link in the network. OSPF routing suffers from un-utilizing network resources, and hence appearance of congested links. Congestion appears in OSPF routing due to the excessive usage of shortest paths where still other links with higher weight values are unutilized.

Many load balancing approaches were proposed to avoid congestion and increase network utilization. One of these approaches argued that optimizing link weights will improve shortest path routing performance, thus no changing needed in underlying infrastructure. Weight optimization approach neither deal with the issue of load splitting, nor the tradeoff relation between exploiting network resources and avoiding congested points. Increasing balanced links may lead to a usage of congested links. On the other hand, avoiding congested links may lead to un-utilizing some uncongested links. This research has two main aims. The first aim is to study the tradeoff relation between utilizing network links and avoiding congested links. The second aim is to provide an unequal load splitting in the current widely deployed shortest path routing. Unequal load splitting that provided in this research is conducted without changing the underlying routing policy and without changing the forwarding mechanism. In context of the first research aim, a previous evenly balancing method is improved by solving two problems. The first problem is Re-using Congested Links (RCL). The second problem is Un-Balancing some available Links (UBL). Solving these two problems will give a wide view about the tradeoff relation between utilizing network links and avoiding congested links. In context of the second research aim, a new proposed Selective Balancing Method (SBM) is developed. SBM selects the routing paths in order to provide unequal load splitting.

Experimental results show that avoiding congested links is more efficient than exploiting too many links from a source towards a destination. In other words, solving RCL problem increases routing efficiency more than solving UBL problem. The results also show that the routing performance of the new proposed method SBM is better than the routing performance of the previous evenly balancing methods due to providing unequal load splitting in the shortest path routing. SBM robustness and execution time are also improved comparing with the previous work. Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

KAEDAH PENGIMBANGAN TRAFIK DALAM PENGHALAAN LALUAN TERPENDEK

Oleh

MAKAREM MOHAMED ABDULQADER BAMATRAF

Mac 2007

Pengerusi: Profesor Madya Mohamed Othman, PhD

Fakulti: Sains Komputer dan Teknologi Maklumat

Protokol OSPF merupakan protokol penghalaan antara-domain yang biasa digunakan. OSPF menghalakan perjalanan trafik di atas laluan terpendek dan akan membahagikan beban dengan sama rata kepada setiap nod, di mana beberapa pautan keluar ke destinasi yang sama berada di atas laluan terpendek tersebut. Laluan terpendek di interpretasikan berdasarkan nilai pemberat yang telah ditetapkan untuk setiap pautan dalam rangkaian. Penghalaan OSPF mengalami masalah pembaziran sumber rangkaian yang seterusnya mengakibatkan kesesakan pautan. Kesesakan dalam OSPF berlaku disebabkan oleh penggunaan berlebihan dalam laluan terpendek sedangkan masih banyak pautan lain yang tinggi pemberat tidak digunakan sepenuhnya.

Terdapat banyak kaedah pengimbangan beban telah diusulkan untuk mengelakkan kesesakkan dan meningkatkan penggunaan rangkaian. Salah satu pendekatan yang diambil adalah dengan mengoptimumkan penggunaan beban pautan untuk meningkatkan prestasi penghalaan, laluan terpendek diperluluan tanpa menjejaskan infrastruktur sedia ada. Kaedah pengoptimuman pemberat tidak melibatkan isu pembahagian beban dan timbal balik antara eksploitasi sumber rangkaian dengan

penghindaran titik sesak. Pertambahan pautan seimbang boleh menyebabkan penggunaan pautan sesak semakin bertambah hingga menyebabkan berlakunya pembaziran pautan tidak sesak yang tidak digunakan.

Penyelidikan ini mengsasarkan dua tujuan utama. Tujuan pertama adalah untuk mengkaji hubungan timbal balik antara pertambahan penggunaan pautan dengan penghindaran pautan sesak. Tujuan kedua adalah untuk menyokong penggunaan penghalaan laluan terpendek. Kajian literatur menerangkan tentang ketaksamaan pembahagian beban yang akan disokong oleh penyelidikan tanpa mengubah polisi asas penghalaan dan mekanisma hadapan dalam konteks halatuju pertama, kaedah pengimbangan sebelum ini ditingkatkan dengan menyelesaikan dua masalah iaitu penggunaan semula pautan sesak (RCL) dan ketidakseimbangan pautan sedia ada (UBL). Penyelesaian dua masalah ini memberikan gambaran menyeluruh terhadap hubungan timbal balik. Sementara itu, dalam halatuju kedua, satu kaedah baru yang dinamakan sebagai pengimbangan pilihan (SBM) telah dibangunkan untuk memilih laluan penghalaan berdasarkan beberapa kriteria kesesakan yang menyokong ketidakseimbangan pembahagian beban.

Keputusan simulasi menunjukkan bahawa masalah RCL mengurangkan ketepatan penghalaan lebih daripada masalah UBL. Dalam erti kata lain, penghindaran laluan sesak lebih efisien berbanding jika mengeksploitasi terlalu banyak pautan untuk menuju destinasi yang sama. Keputusan juga menunjukkan bahawa prestasi penghalaan bagi kaedah SBM yang baru diperkenalkan berupaya mengatasi prestasi penghalaan kaedah sebelum ini. Penghalaan SBM adalah lebih baik berbanding kaedah sebelum ini dari aspek kegagalan rangkaian dan pengarangan jumlah masa yang diperlukan untuk mendapatkan nilai pemberat yang optimum.

ACKNOWLEDGEMENTS

First and foremost, Alhamdulillah for giving me the strength, patience, courage, and determination in completing this work. All grace and thanks belongs to Almighty Allah.

Many special thanks go to my supervisor Associate Professor Dr. Mohamed Othman, for his invaluable advice, helpful guidance and who always provides valuable recommendations and suggestions to my inquiries tranquilly and accurately.

I would like to take this opportunity to express my sincere appreciation and thanks to the members of the supervisory committee, Dr. Shamala Subramaniam and Dr. Jalil Desa for their advice and comments during the completion of this thesis.

I would like also to express my sincere appreciation and thanks to my brother Dr. Abdulrahman for his advice and comments during the completion of this thesis. Dr. Abdulrahman has assisted me as a professional in research art and as a person who has a huge experience in doing scientific research. In addition, I would like to thank Dr. Bernard Fortz from AT&T labs for his support, cooperation, and patient in answering any questions regarding his optimization model that used as a benchmark in this work.

Sincere and heartfelt thanks to the Faculty of Computer Science and Information Technology and the staff of the Postgraduate office, Library and Universiti Putra Malaysia, for providing a studying and research environment.

Finally, many thanks to my wife, my kids, my brothers, my sisters, all the family members and friends for their love, constant support and encouragement in all my endeavors.

vii

I certify that an Examination Committee has met on 26/3/2007 to conduct the final examination of Makarem Mohamed Abdulqader Bamatraf on his Doctor of Philosophy entitled "Traffic Balancing Method in Shortest Path Routing" in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Ali Mamat, PhD

Associate Professor Faculty of Computer Science and Information Technology Universiti Putra Malaysia (Chairman)

Hamidah Ibrahim, PhD

Associate Professor Faculty of Computer Science and Information Technology Universiti Putra Malaysia (Internal Examiner)

Abd. Rahman Ramli, PhD

Associate Professor Faculty of Engineering Universiti Putra Malaysia (Internal Examiner)

Kasmiran Jumari, PhD

Professor Faculty of Engineering Universiti Kebangsaan Malaysia (External Examiner)

HASANAH MOHD GHAZALI, PhD

Professor/Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date:

This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee are as follows:

Mohamed Othman, PhD

Associate Professor Faculty of Computer Science and Information Technology Universiti Putra Malaysia (Chairman)

Jalil Desa, PhD

Lecturer Faculty of Computer Science and Information Technology Universiti Putra Malaysia (Member)

Shamala Subramaniam, PhD

Lecturer Faculty of Computer Science and Information Technology Universiti Putra Malaysia (Member)

AINI IDERIS, PhD

Professor/Dean School of Graduate Studies Universiti Putra Malaysia

Date: 17 July 2007

DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

MAKAREM MOHAMED BAMATRAF

Date: 18 June 2007

TABLE OF CONTENTS

DEDICATION	ii
ABSTRACT	iii
ABSTRAK	V
ACKNOWLEDGEMENTS	vii
APPROVAL	viii
DECLARATION	Х
LIST OF TABLES	xiv
LIST OF FIGURES	xviii
LIST OF ABBREVIATIONS	xxiv

CHAPTER

1	INTI	RODUCTION	1
	1.1	Background	1
	1.2	Problem Statement	3
	1.3	Research Objectives	6
	1.4	Research Scope	8
	1.5	Research Contributions	9
	1.6	Thesis Organization	11
2	LITI	ERATURE REVIEW	12
	2.1	Introduction	12
		2.1.1 Traffic Engineering	14
		2.1.2 Traffic Engineering Requirements	16
		2.1.3 Traditional Routing in the Internet	19
		2.1.4 Equal Cost Multiple Path	20
		2.1.5 Traffic Engineering Extensions of OSPF	21
	2.2	Related Works	21
		2.2.1 Optimization Using Link Weights	23
		2.2.2 Optimization Using Link Weights and Splitting Ratios	26
		2.2.3 Adaptive Approaches for Load Balancing	27
		2.2.4 OSPF-OMP	27
	2.3	Summary	28
3	RES	EARCH METHODOLOGY	30
	3.1	Introduction	30
	3.2	Methodology for Improving Traditional Shortest Path Routing	31
	3.3	Traffic Engineering Framework	31
	3.4	Framework Measurement Stage	33
		3.4.1 Initial Weights	34
		3.4.2 Topologies	34
		3.4.3 Traffic Demands	35
	3.5	Framework Routing Stage	36
		3.5.1 Load Distribution	37
		3.5.2 Cost Computation	37
	3.6	Framework Optimization Stage	38

	3.6.1	Optimization Tool	38
	3.6.2	Optimization Heuristic Method	39
3.7	Frame	work Reconfiguration stage	39
3.8	Practic	cal Aspects of the Framework	40
3.9	Simula	ation Model	40
	3.9.1	Input Information	41
		Routing Part	41
	3.9.3	Weight Optimization	42
		Output Information	42
3.10	Frame	work Weaknesses and Requirements	43
3.11	Perfor	mance Metrics	44
	3.11.1	Routing Cost	45
	3.11.2	Optimization Convergence	47
	3.11.3	Optimization Execution Time	48
3.12	Frame	work Robustness	48
	3.12.1	Robustness to Single Link Failure	48
	3.12.2	Robustness to Traffic Noise	50
3.13	Summ	ary	51
BAL	ANCIN	G METHODS FOR REDUCING OSPF CONGESTIONS	52
4.1	Introd		52
4.2	Routir	ng Formulation	53
		Cost Measurement Function	53
	4.2.2	Normalized Cost Function	54
	4.2.3	Optimal Routing	55
		OSPF Weight Setting Problem	55
4.3	Optim	izing OSPF Weights	57
	4.3.1	Evenly Balancing Method (EBM)	57
	4.3.2	Local Congestion Detection Method (LCDM)	58
4.4	Studyi	ing and Solving EBM Problems	59
	4.4.1	Arising of UBL Problem	61
	4.4.2	Proposed Solution for UBL Problem	62
	4.4.3	Arising of RCL Problem	63
	4.4.4	Proposed Solution for RCL Problem	64
4.5	Result	s and Discussion	65
	4.5.1	Routing Cost in Hierarchal Networks	67
	4.5.2	Routing Cost in Waxman Networks	73
	4.5.3	Routing Cost in Random Networks	77
	4.5.4	Routing Cost Improvements against Unit	81
	4.5.5	Routing Cost Improvements against EBM	82
	4.5.6	Impact of Solving UBL Problem	84
	4.5.7	Impact of Solving RCL Problem	86
	4.5.8	U-IBM Performance in Waxman and Random Networks	86
	4.5.9	1 0	90
		Optimization Execution Time	97
		Testing Against Link Failure	104
		Testing Against Traffic Noise	116
		Evaluation over All Network Cases	129
4.6	Summ	ary	130

4

5	SEL	ECTIVE MULTI-PATH BALANCING FOR OSPF ROUTING	132
	5.1	Introduction	132
	5.2	Previous Work Problems	133
		5.2.1 Local Congestion Detection	134
		5.2.2 Equal Load Splitting	134
		5.2.3 Importance of Solving Previous Work problems	135
	5.3	Proposed Global Congestion Detection Method (GCDM)	137
		5.3.1 Cleaning Shortest Paths	138
		5.3.2 GCDM Algorithm	141
	5.4	Proposed Multi-path Selective Balancing Method (SBM)	143
		5.4.1 Combination Generation	144
		5.4.2 SBM Algorithm	144
		5.4.3 Load Distribution	148
		5.4.4 Updating Weights	150
	5.5	Results and Discussion	154
		5.5.1 Routing Cost in Hierarchal Networks	156
		5.5.2 Routing Cost in Waxman Networks	160
		5.5.3 Routing Cost in Random Networks	164
		5.5.4 Routing Cost Improvements against Unit	167
		5.5.5 Routing Cost Improvements against EBM	169
		5.5.6 Optimization Convergence	170
		5.5.7 Optimization Execution Time	176
		5.5.8 Congestion Detection Results	183
		5.5.9 Testing Against Link Failure	192
		5.5.10 Testing Against Traffic Noise	203
		5.5.11 Evaluation over All Network Cases	214
	5.6	Summary	216
6	CON	CLUSION AND FUTURE WORK	218
	6.1	Conclusion	218
	6.2	Future Work	220
RE	FEREN	NCES	222
AP	APPENDICES		
BIO	DDATA	OF THE AUTHOR	234
LIS	ST OF I	PUBLICATIONS	235

LIST OF TABLES

Tabl	le	Page
3.1	The topologies used in the experiments	36
4.1	Cost Average and Best Cost for hier50a network	70
4.2	Cost Average and Best Cost for hier50b network	71
4.3	Cost Average and Best Cost for hier100 network	72
4.4	Cost Average and Best Cost for wax50a network	74
4.5	Cost Average and Best Cost for wax50b network	75
4.6	Cost Average and Best Cost for wax100 network	76
4.7	Cost Average and Best Cost for rand50a network	78
4.8	Cost Average and Best Cost for rand50b network	79
4.9	Cost Average and Best Cost for rand100 network	80
4.10	Cost Average and Best Cost improvements against Unit	81
4.11	Cost Average and Best Cost improvements against EBM	83
4.12	Impact of solving UBL and RCL problems	85
4.13	Cost Average and Best Cost for wax50a network after changing 20% of capacities to 200	89
4.14	Cost Average and Best Cost for rand50a network after changing 20% of capacities to 200	90
4.15	Convergence speed up averages for all tested networks	91
4.16	Execution time averages from 12 scaled demands for each network	98
4.17	Cost Average for hier50a network with single link failure	105
4.18	Cost Average for hier50b network with single link failure	106
4.19	Cost Average for hier100 network with single link failure	107
4.20	Cost Average for wax50a network with single link failure	108
4.21	Cost Average for wax50b network with single link failure	109

4.22	Cost Average for wax100 network with single link failure	110
4.23	Cost Average for rand50a network with single link failure	112
4.24	Cost Average for rand50b network with single link failure	113
4.25	Cost Average for rand100 network with single link failure	114
4.26	Cost Average improvements against EBM for all networks with single link failure	116
4.27	Best Cost for hier50a network with traffic noise	117
4.28	Best Cost for hier50b network with traffic noise	118
4.29	Best Cost for hier100 network with traffic noise	119
4.30	Best Cost for wax50a network with traffic noise	121
4.31	Best Cost for wax50b network with traffic noise	122
4.32	Best Cost for wax100 network with traffic noise	123
4.33	Best Cost for rand50a network with traffic noise	125
4.34	Best Cost for rand50b network with traffic noise	126
4.35	Best Cost for rand100 network with traffic noise	127
4.36	Cost Average improvements against EBM for all networks with traffic noise	128
4.37	Cost Average improvements against EBM for all network cases	130
5.1	Cost Average and Best Cost for hier50a network	157
5.2	Cost Average and Best Cost for hier50b network	158
5.3	Cost Average and Best Cost for hier100 network	159
5.4	Cost Average and Best Cost for wax50a network	161
5.5	Cost Average and Best Cost for wax50b network	162
5.6	Cost Average and Best Cost for wax100 network	163
5.7	Cost Average and Best Cost for rand50a network	164
5.8	Cost Average and Best Cost for rand50b network	165
5.9	Cost Average and Best Cost for rand100 network	166

5.10 Cost Average and Best Cost improvements against Unit	168
5.11 Cost Average and Best Cost improvements against EBM	169
5.12 Convergence speed up average for all tested networks	171
5.13 Execution time averages from 12 scaled demands for each network	177
5.14 Cost Average and Best Cost for hier50a network	184
5.15 Cost Average and Best Cost for hier50b network	185
5.16 Cost Average and Best Cost for wax50a network	187
5.17 Cost Average and Best Cost for wax50b network	188
5.18 Cost Average and Best Cost for rand50a network	189
5.19 Cost Average and Best Cost for rand50b network	190
5.20 Cost Average and Best Cost improvements against LCDM	191
5.21 Cost Average for hier50a network with single link failure	193
5.22 Cost Average hier50b network with single link failure	194
5.23 Cost Average hier100 network with single link failure	195
5.24 Cost Average wax50a network with single link failure	196
5.25 Cost Average wax50b network with single link failure	197
5.26 Cost Average wax100 network with single link failure	198
5.27 Cost Average rand50a network with single link failure	200
5.28 Cost Average rand50b network with single link failure	201
5.29 Cost Average rand100 network with single link failure	202
5.30 Cost Average improvements against EBM for all networks with single link failure	203
5.31 Best Cost for hier50a network with traffic noise	204
5.32 Best Cost for hier50b network with traffic noise	205
5.33 Best Cost for hier100 network with traffic noise	206
5.34 Best Cost for wax50a network with traffic noise	207

5.35	Best Cost for wax50b network with traffic noise	208
5.36	Best Cost for wax100 network with traffic noise	209
5.37	Best Cost for rand50a network with traffic noise	211
5.38	Best Cost for rand50b network with traffic noise	212
5.39	Best Cost for rand100 network with traffic noise	213
5.40	Cost Average improvements against EBM for all networks with traffic noise	214
5.41	Cost Average improvements against EBM for all network cases	216

LIST OF FIGURES

Figu	ire	Page
2.1	Shortest path routing within an autonomous system is based on OSPF link weights	13
2.2	Traffic Models: (a) path matrix, (b) traffic matrix, and (c) demand matrix	18
3.1	Traffic Engineering Framework	33
3.2	(a) Load distribution of $d^{(1,7)}$; (b) Load distribution of $d^{(1,7)}$ and $d^{(2,7)}$	37
3.3	Simulator Architecture	43
3.4	Simulation of single link failure and traffic noise	50
4.1	One shortest path between u and t before EBH balancing	60
4.2	Three available paths between u and t after EBM balancing	60
4.3	Two available paths between <i>u</i> and <i>t</i> after EBM balancing	62
4.4	One shortest path between <i>u</i> and <i>t</i> before EBM balancing	63
4.5	Arising of RCL problem after EBM balancing	64
4.6	Cost Average for hier50a network	70
4.7	Cost Average for hier50b network	71
4.8	Cost Average for hier100 network	72
4.9	Cost Average for wax50a network	74
4.10	Cost Average for wax50b network	75
4.11	Cost Average for wax100 network	76
4.12	Cost Average for rand50a network	78
4.13	Cost Average for rand50b network	79
4.14	Cost Average for rand100 network	80
4.15	Routing Cost Improvement averages from Table 4.10	82
4.16	Average of Cost and Best Cost improvements against EBM	84

4.17 (a) before changing w_{a2} , (b) after changing w_{a2}	88
4.18 Convergence for hier50a network	92
4.19 Convergence for hier50b network	92
4.20 Convergence for hier100 network	93
4.21 Convergence for wax50a network	94
4.22 Convergence for wax50b network	94
4.23 Convergence for wax100 network	95
4.24 Convergence for rand50a network	96
4.25 Convergence for rand50b network	96
4.26 Convergence for rand100 network	97
4.27 Time for hier50a network	99
4.28 Time for hier50b network	100
4.29 Time for hier100 network	100
4.30 Time for wax50a network	101
4.31 Time for wax50b network	101
4.32 Time for wax100 network	102
4.33 Time for rand50a network	102
4.34 Time for rand50b network	103
4.35 Time for rand100 network	103
4.36 Cost Average for hier50a network with single link failure	105
4.37 Cost Average for hier50b network with single link failure	106
4.38 Cost Average for hier100 network with single link failure	107
4.39 Cost Average for wax50a network with single link failure	109
4.40 Cost Average for wax50b network with single link failure	110
4.41 Cost Average for wax100 network with single link failure	111

4.42 Cost Average for rand50a network with single link failure	113
4.43 Cost Average for rand50b network with single link failure	114
4.44 Cost Average for rand100 network with single link failure	115
4.45 Best Cost for hier50a network with traffic noise	118
4.46 Best Cost for hier50b network with traffic noise	119
4.47 Best Cost for hier100 network with traffic noise	120
4.48 Best Cost for wax50a network with traffic noise	121
4.49 Best Cost for wax50b network with traffic noise	122
4.50 Best Cost for wax100 network with traffic noise	123
4.51 Best Cost for rand50a network with traffic noise	125
4.52 Best Cost for rand50b network with traffic noise	126
4.53 Best Cost for rand100 network with traffic noise	127
5.1 (a) One shortest path from <i>s</i> to <i>t</i> , (b) three shortest paths from <i>s</i> to <i>t</i> af setting wa $2 = 2$	ter 135
5.2 (a) balancing may send more traffic over congested links(b) optimized balancing by setting wa3=3	136
5.3 Available paths from source s to destination t	138
5.4 Pseudo code for Clean Shortest Path procedure	139
5.5 Pseudo code for Store Load procedure	140
5.6 Pseudo code for Restore Load procedure	140
5.7 Pseudo code for GCDM procedure	142
5.8 Pseudo code for GCDM-Detect procedure	143
5.9 Pseudo code for SBM Method	147
5.10 Pseudo code for Restore Combination Load procedure	148
5.11 Pseudo code for load distribution procedure	149
5.12 Pseudo code for load distribution procedure for each path	150

5.13 Pseudo code for weights updating procedure	152
5.14 Pseudo code for restoring old weights procedure	152
5.15 Solid lines are the best path combination between s and t	153
5.16 Solid lines are the shortest paths between s and t after weight updating	153
5.17 Cost average for hier50a network	158
5.18 Cost Average for hier50b network	159
5.19 Cost Average for hier100 network	160
5.20 Cost Average for wax50a network	161
5.21 Cost Average for wax50b network	162
5.22 Cost Average for wax100 network	163
5.23 Cost Average for rand50a network	165
5.24 Cost Average for rand50b network	166
5.25 Cost Average for rand100 network	167
5.26 Average of Cost and Best Cost improvements against Unit	168
5.27 Average of Cost and Best Cost improvements against EBM	170
5.28 Convergence for hier50a network	172
5.29 Convergence for hier50b network	172
5.30 Convergence for hier100 network	173
5.31 Convergence for wax50a network	173
5.32 Convergence for wax50b network	174
5.33 Convergence for wax100 network	174
5.34 Convergence for rand50a network	175
5.35 Convergence for rand50b network	175
5.36 Convergence for rand100 network	176
5.37 Time for hier50a network	178

5.38 Time for hier50b network	179
5.39 Time for hier100 network	179
5.40 Time for wax50a network	180
5.41 Time for wax50b network	180
5.42 Time for wax100 network	181
5.43 Time for rand50a network	181
5.44 Time for rand50b network	182
5.45 Time for rand100 network	182
5.46 Cost Average for hier50a network	185
5.47 Cost Average for hier50b network	186
5.48 Best Cost for wax50a network	187
5.49 Best Cost for wax50b network	188
5.50 Best Cost for rand50a network	190
5.51 Best Cost for rand50b network	191
5.52 Cost Average for hier50a network with single link failure	193
5.53 Cost Average for hier50b network with single link failure	194
5.54 Cost Average for hier100 network with single link failure	195
5.55 Cost Average for wax50a network with single link failure	197
5.56 Cost Average for wax50b network with single link failure	198
5.57 Cost Average for wax100 network with single link failure	199
5.58 Cost Average for rand50a network with single link failure	200
5.59 Cost Average for rand50b network with single link failure	201
5.60 Cost Average for rand100 network with single link failure	202
5.61 Best Cost for hier50a network with traffic noise	205
5.62 Best Cost for hier50b network with traffic noise	206

5.63	Best Cost for hier100 network with traffic noise	207
5.64	Best Cost for wax50a network with traffic noise	208
5.65	Best Cost for wax50b network with traffic noise	209
5.66	Best Cost for wax100 network with traffic noise	210
5.67	Best Cost for rand50a network with traffic noise	211
5.68	Best Cost for rand50b network with traffic noise	212
5.69	Best Cost for rand100 network with traffic noise	213

LIST OF ABBREVIATIONS

AS	Autonomous System
ATM	Asynchronous Transfer Mode
BGP	Border Gateway Protocol
EBM	Evenly Balancing Method
ECMP	Equal Cost Multiple Path
EGP	Exterior Gateway Protocol
GCDM	Global Congestion Detection Method
IBM	Improved Balancing Method
IETF	Internet Engineering Task Force
IGP	Interior Gateway Protocols
IP	Internet Protocol
IS-IS	Intermediate System-Intermediate System
ISP	Internet Service Provider
LCDM	Local Congestion Detection Method
MIB	Management Information Bases
MPLS	Multiple Protocol Label Switching
NP	Non-deterministic Polynomial
OSPF	Open Shortest Path First
OSPF-OMP	Open Shortest Path First – Optimized Multi-Path
QoS	Quality of Service
RCL	Re-using avoided Congested Links

R-IBM Re-using avoided Congested Links - Improved Balancing Method

- RIP Routing Information Protocol
- SBM Selective Balancing Method
- SNMP Simple Network Management Protocol
- TCP Transmission Control Protocol
- UBL Un-Balancing available Links
- U-IBM Un-Balancing available Links Improved Balancing Method
- UR-IBM UBL and RCL Improved Balancing Method