STATISTICAL APPROACH FOR IMAGE RETRIEVAL

KHOR SIAK WANG

DOCTOR OF PHILOSOPHY UNIVERSITI PUTRA MALAYSIA

2007

STATISTICAL APPROACH FOR IMAGE RETRIEVAL

By

KHOR SIAK WANG

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirement for the Degree of Doctor of Philosophy

January 2007

Family, wife & sons

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy

STATISTICAL APPROACH FOR IMAGE RETRIEVAL

By

KHOR SIAK WANG

January 2007

Chairman: Associate Professor Fatimah Bt. Dato' Ahmad, PhD

Faculty: Computer Science And Information Technology

Since the emergence of Internet, a gigantic volume of images have been uploaded into the Internet from time to time. Relying on the traditional text-based search approach to locate the required images could no longer meet the diverse needs of users. This persistent trend has demanded a more sophisticated search algorithm on these images.

One of the popular and common approaches for image search is Content-based Image Retrieval or CBIR for short, i.e. retrieval of images based on their visual contents such as shapes, colours, textures etc.

Of all the visual contents identifiable from an image, colour is considered to be the commonest visual attribute that aids in image retrieval. Works on colour-based image retrieval systems are largely based on the use of colour histogram, which has been noted to suffer from a major drawback, i.e. absence of spatial information, which is also an important requirement for an accurate retrieval result.

In this thesis, a novel method based on the modified generic framework of CBIR is proposed. This technique, formally known as Image Retrieval Using Statistical-based Approach is based on the idea of grouping pixels with similar colour codes within an image. From these grouped pixels, they are sorted in descending order of pixel count, which intuitively identifies dominant colours within an image. Statistical information, i.e. means and standard deviations will then be derived from these sorted groups. The extracted statistical information will be stored in both text files and matrixes, which will be used to aid in the image retrieval process. The system has also included some adjustable parameters, such as window size, CC percentage similarity, which can be used to improve retrieval accuracy. This statistical-based approach has been tested on the standard UCID image collection where it has shown improved results, with an average precision value of about 70% as compared to an approximate value of 25% using the histogram-based approach, in term of retrieval accuracy. Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

DAPATAN SEMULA IMEJ YANG BERDASARKAN KAEDAH STATISTIK

Oleh

KHOR SIAK WANG

Januari 2007

Pengerusi: Profesor Madya Fatimah Bt. Dato' Ahmad, PhD

Fakulti:Sains Komputer dan Teknologi Maklumat

Semenjak kewujudan Internet, terdapat banyak imej yang dimasukkan ke dalam Internet dari semasa ke semasa. Kaedah mendapatkan semula imej secara tradisional yang berdasarkan teks tidak dapat memenuhi keperluan para pengguna. Tren ini memerlukan kaedah pencarian imej yang sopistikated.

Salah satu daripada kaedah yang popular dan biasa untuk mendapatkan semula imej adalah "Content-based Image Retrieval" atau CBIR, iaitu kaedah mendapatkan semula imej berasaskan properti visual seperti bentuk, warna, tekstur dan lain-lain.

Dari semua properti visual yang terkandung di dalam imej, properti warna merupakan properti yang sering digunakan untuk mendapatkan semula imej. Kaedah biasa yang digunakan untuk dapatan semula imej berasaskan warna ialah penggunaan histogram. Kelemahan utama kaedah ini adalah kehadiran lokasi objek di dalam sesuatu imej tidak dipertimbangkan. Pertimbangan kehadiran lokasi ini merupakan faktor yang penting untuk mendapatkan semula imej dengan tepat.

Dalam tesis ini, model CBIR yang tradisi akan diubahsuai. Kaedah yang dicadangkan dikenali sebagai Dapatan Semula Imej Yang Berdasarkan Informasi Statistik. Kaedah tersebut berdasarkan idea di mana semua pisel yang mempunyai kod warna yang seragam akan dikelompokkan. Kelompok-kelompok pisel ini akan disusun menurut saiznya. Dengan jelasnya, apabila kelompok tersebut telah disusun mengikut saiznya, ia juga memberi gambaran di mana warna dominan mudah ditentukan. Dari kelompok ini, informasi statistic, iaitu min dan penaburan piawai akan diperolehi. Maklumat tersebut akan disimpan di dalam fail dan array untuk membantu proses dapatan semula imej berasaskan warna. Sistem yang dicadangkan juga mempunyai parameter yang boleh digunakan oleh para pengguna untuk memperbaiki keputusan. Eksperimen yang dicadangkan mampu memberi keputusan ketepatan secara purata 70% ketepatan dibandingkan dengan 25% dengan menggunakan kaedah histogram.

ACKNOWLEDGEMENTS

First and foremost, I would like to thank Associate Professor Fatimah Bt. Dato' Ahmad for giving me an opportunity to start off this project. I 'm indeed obliged by her enthusiastic support of the project from the very early stages. Without her tireless assistance and guidance, this project would never be completed on time. Also, without her constant monitoring and supervisions on the progress of my project, I believe that the contents of this project would still be bits and pieces stored in my hard disk. Her cooperation and contributions are indispensable.

Being a part-time student, I could hardly devote my precious time to my wife, Ms. Kwang Wai Ching, my 3-year old son Khor Hoong Yik and my new-born baby, Khor Hoong Yang, who have been very supportive and patiently waiting for me to complete my study.

Being one of the key persons in the supervisory committee team, Associate Professor Ramlan bin Mahmod is always tight with his schedules and daily events. He really looks serious but approachable. Without his serious-looking face, I would not be able to ensure my work is of the required quality and standard. Thanks, once again.

Associate Professor Hamidah bt. Ibrahim, who is delightful to work with, and always replies me with very short mail on my requests but straight to the point, has been helpful in giving me concrete and constructive comments of my work. I would like to gratefully acknowledge her contributions and her immense help and vast knowledge in database. Finally, many thanks also go to some of my peer colleagues, where they prefer themselves not to be named, who have given me constructive comments and ideas in certain parts of my research work. I certify that an Examination Committee has met on 26/01/2007 to conduct the final examination of Khor Siak Wang on his Doctor of Philosophy thesis entitled "Image Retrieval Using Statistical-based Approach" in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows: -

ALI MAMAT, PhD

Associate Professor Faculty of Computer Science and Information Technology Universiti Putra Malaysia (Chairman)

RAHMITA WIRZA, PhD

Faculty of Computer Science and Information Technology Universiti Putra Malaysia

SHYAMALA DORAISAMY, PhD

Faculty of Computer Science and Information Technology Universiti Putra Malaysia

TENGKU MOHD TENGKU SEMBOK, PhD

Professor Faculty of Information Science and Technology Universiti Kebangsaan Malaysia

HASANAH MOHD. GHAZALI, PhD

Professor/Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date:

This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee are as follows: -

Fatimah Dato' Ahmad, PhD

Associate Professor Faculty of Computer Science and Information Technology Universiti Putra Malaysia (Chairman)

Ramlan Mahmod, PhD

Associate Professor Faculty of Computer Science and Information Technology Universiti Putra Malaysia (Member)

Hamidah Ibrahim, PhD

Associate Professor Faculty of Computer Science and Information Technology Universiti Putra Malaysia (Member)

> AINI IDERIS, PhD Professor/Dean School of Graduate Studies Universiti Putra Malaysia

Date:

DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations, which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

KHOR SIAK WANG

Date:

TABLE OF CONTENTS

DEDICATION	
DEDICATION	ii
ABSTRACT	iii
ABSTRAK	v
ACKNOWLEDGEMENTS	vii
APPROVAL	ix
DECLARATION	xi
LIST OF TABLES	XV
LIST OF FIGURES	xvii
LIST OF ABBREVIATIONS	xx

CHAPTER

Ι	INTRODUCTION	22
	Overview	22
	Need for Image Retrieval	24
	Content-based Image Retrieval	25
	Colour-based Retrieval	27
	Problem Statement	27
	Spatial Information	27
	Dimensionality of Histogram	28
	Objectives of the Research	29
	Main Contributions	29
	Importance of the Research	31
	Thesis Organization	32
	Summary	33
II	LITERATURE REVIEW	34
	Overview	34
	Retrieval Levels	35
	l st Level	35
	2 nd Level	36
	3 rd Level	37
	Traditional Image Retrieval Systems	38
	Content-Independent Image Retrieval	38
	Keyword-based Image Retrieval	38
	Current Research Works	41
	Histogram-based Representation	44
	Integrated Spatial Colour Approach	50
	Back Projection	51
	Colour Coherence Vectors	52
	Colour Correlograms	53
	Spectral Covariance and Fuzzy Regions	54

Fast Image Retrieval Using Colour-Spatial Data	56
Spatial Colour Histogram	57
Spatial-Chromatic Histogram	58
Partition-based Representation	59
Regional Representation	60
Commercial Applications for Colour Retrieval Systems	61
Query by Image Content (QBIC)	62
VisualSEEk	63
Excalibur Visual RetrievalWare SDK 65	
Critical Analysis of Various Approaches	66
Summary	69
METHODOLOGY	70
Overview	70
System Requirements for Experiment Run	71
Standard Dataset	71
UCID	72
Hardware Requirements	72
Software Requirements	73
Test Data	73
Summary of Query Images	76
Mathematical Proof	81
Summary	82
USING STATISTICAL-BASED APPROACH	83
Overview	83
Generic Framework for Image Retrieval System	83
Proposed Framework for Image Retrieval System	85
Image Preprocessing	87
Image Retrieval Process	87
Image Acquisition	91
Constraint Imposer	<i>93</i>
Feature Extraction (Image Preprocessing)	96
Indexer	99
Matrix Constructor	100
User Interface	106
User Input	106
Query Parser	109
Feature Extraction (Image Retrieval)	109
Extraction of Essential Information	110
Colour Code	114
CC Extractor	118
SI Retriever	119
DC Identifier	121
Similarity Match Analyzer	122

III

IV

	Window Size	123	
	Matched CCs	124	
	CC Percentage Similarity	124	
	Colour Range Size	125	
	Image Matching Process	126	
	Stage 1 – Deriving the Number of Matched CCs	126	
	Stage 2 – Computing Chromatic Difference	126	
	Stage 3 – Incorporating Spatial Information	127	
	An Example	129	
	Refinery Agent 132		
	Calculation of Matching Hits		132
	Promote/Demote Process	133	
	Ranker	133	
	Retrieval Manager	134	
	Relevance Feedback	134	
	Functional Flow	136	
	Descriptions of Flowcharts	141	
	Selection Sort	148	
	Summary	149	
V	RESULTS AND DISCUSSIONS	150	
	Overview	150	
	Summary of Query 1 (Histogram Approach)	151	
	General Information	151	
	Adjustable Parameters	151	
	Retrieved Images	152	
	Possible Similar Images (NOT in ranked order)	153	
	Summary of Query 1 (Proposed Technique)	155	
	General Information	155	
	Adjustable Parameters	155	
	Retrieved Images	156	
	Possible Similar Images (NOT in ranked order)	157	
	Discussions of Results for Query 1	160	
	Conclusion	160	
	Summary of Results	161	
	Overall Conclusions and Findings	169	
	Scenario-based Illustrations	169	
	Summary of Individual Results	170	
	Overall Summary of Results	175	
	Overall Conclusion and Findings	177	
	Reduced Computational Load	177	
	Summary	180	
VI	CONCLUSION AND FUTURE WORKS	181	
	Conclusion	181	
	Future Works	182	

Summary	184
REFERENCES/BIBLIOGRAPHY APPENDICES BIODATA OF THE AUTHOR	185 192 197

LIST	OF	TA	BL	ES
------	----	----	----	----

Table		Page
3.0	Sample Query Images	79
3.1	A Summary of Adjustable Parameters	80
3.2	Five Unique Scenarios	82
4.0	A Summary of Roles and Functions for Each Subsystem in the Proposed Model for Colour Image Retrieval System	90
4.1	Structure of the Text File, IndTbl.txt	99
4.2	Default Values of the Adjustable Parameters	109
4.3	CC Values	118
4.4	A Summary of Images for Image Matching Process	129
4.5	A Summary of CCs and Pixel Counts for Both Query Image and Stored Image	130
4.6	Arrays Used in Image Retrieval Process	144
5.0	Histogram – Details of Query Image (Query 1)	151
5.1	Recall & Precision Values for Query 1 (Histogram)	154
5.2	Details of Query Image (Query 1)	155
5.3	Recall & Precision Values for Query 1	158
5.4	Summary of Findings (Query 1)	159
5.5	Interpolated Results (Query 1)	159
5.6	Summary Findings of Histogram Approach	164
5.7	Summary Findings of the Proposed Technique	165
5.8	Averaged Precision Values for Thirty Queries	167
5.9	Statistical Information for Scenario 1 (Query Image)	170

5.10	Statistical Information for Scenario 1 (Stored Image)	170
5.11	Statistical Information for Scenario 2 (Query Image)	171
5.12 5.13	Statistical Information for Scenario 2 (Stored Image) Statistical Information for Scenario 3 (Query Image)	171 172
5.14	Statistical Information for Scenario 3 (Stored Image)	172
5.15	Statistical Information for Scenario 4 (Query Image)	173
5.16	Statistical Information for Scenario 4 (Stored Image)	173
5.17	Statistical Information for Scenario 5 (Query Image)	174
5.18	Statistical Information for Scenario 5 (Stored Image)	174
5.19	Summary of Statistical Information	176

LIST OF FIGURES

Figure		Page
1.0	A General Problem of Image Retrieval	22
2.0	Some Sample Images for Retrieval at 1 st Level	36
2.1	Some Sample Images for Retrieval at 2 nd Level	36
2.2	Some Sample Images for Retrieval at 3 rd Level	37
2.3	A Sample Query on Keyword-based Image Search Engine 39	
2.4	General Approaches for Colour-based Image Systems 43	Retrieval
2.5	A Flying Eagle	44
2.6	Histogram	44
2.7	Two Images With Simple Objects	47
2.8	Identified Problems in Histogram-based Colour System 49	Retrieval
2.9	Sample Image Where Object is Placed at Center	55
2.10	Distribution State of Pixels	57
2.11	An Image Being Divided Into six Partitions	59
2.12	An Image Composed of Salient Regions	60
2.13	A Red Rose	61
2.14	Sample Query Screen of QBIC	63
2.15	Image Decomposition	63
2.16	A Sample Input Screen of VisualSEEk	65
2.17	A Sample Input Screen of Excalibur Visual RetrievalWare	66
4.0	A Generic Framework for the Color Image Retrieval System 84	

4.1	A Proposed Framework for the Color Image Retrieval System 80	
4.2	Constraints on Pre-processed Image	93
4.3	Structure of the Text File, IndTbl.txt	100
4.4	Arrays That Hold Data of the Text File	101
4.5	Schematic View of Image Preprocessing	105
4.6	Main Menu	106
4.7	Image Preprocessing	107
4.8	Query Screen	107
4.9	Search Parameters	108
4.10	Sample 1 - Stored And Query Images 1	11
4.11	Sample 2 - Stored And Query Images 1.	11
4.12	Sample 3 - Stored And Query Images 1	12
4.13	Discretization of the RGB Components	116
4.14	Sample Image With its Distribution State of Pixels	120
4.15	Window Size	123
4.16	Extracted Information of the Query Image	129
4.17	Extracted Information of the Stored Image	130
4.18	Flowchart Showing Image Preprocessing (for Stored Images) 1.	37
4.19	Flowchart Showing Functional Flow of the Retrieval Process	138
4.20	Flowchart Showing Functional Flow of the Feature Extraction Process (for Query Image)	139
4.21	Flowchart Showing the Image Matching Process	140

4.22	Manner in Which Pixels are Being Processed	141
5.0	Retrieved Images (First Page) – Query 1 (Histogram)	152
5.1	Retrieved Images (Second Page) – Query 1 (Histogram)	152
5.2	Retrieved Images – Query 1 (Histogram)	153
5.3	Retrieved Images (First Page) – Query 1	156
5.4	Retrieved Images (Second Page) – Query 1	156
5.5	Retrieved Images – Query 1	157
5.6	Recall & Precision Graph (Query 1)	160
5.7	Results of the Query Image "Flag"	162
5.8	Results of the Query Image "Dancers"	163
5.9	Averaged Recall & Precision Values (Line Chart)	168
5.10	Averaged Recall & Precision Values (Bar Chart)	168

LIST OF ABBREVIATIONS

2D	Two Dimensions
3D	Three Dimensions
ATM	Asynchronous Transmission Mode
CAD	Computer-aided Design
CBIR	Content-based Image Retrieval
CBVIR	Content-based Visual Information Retrieval
CC	Colour Code
CCV	Colour Coherence Vector
CD	Compact Disk
CIE	Commission Internationale de l'Êclairage
СМҮ	Cyan (C), Magenta (M), and Yellow (Y)
CRT	Cathode Ray Tube
DC	Dominant Colour
FE	Feature Extraction
GUI	Graphical User Interface
HIS	Hue-Intensity-Saturation
HSV	Hue-Saturation-Value
IR	Information Retrieval
ISDN	Integrated Services Digital Network
MIR	Multimedia Information Retrieval
MARS	Multimedia Analysis and Retrieval System
MPEG	Moving Picture Experts Group

QBIC	Query By Image Content
RGB	Red-Green-Blue
RF	Relevance Feedback
SCH	Spatial-Chromatic Histogram (SCH)
SI	Statistical Information
SMAT	Sequenced Multi-Attribute Tree
SONET	Synchronous Optical Network
SQL	Structured Query Language
UCID	Uncompressed Colour Image Database
VLSI	Very Large-Scale Integration