ANTIOXIDANT ELEMENTS ANALYSIS AND ENZYME ACTIVITIES IN
HEPATOCARCINOGENESIS INDUCED RATS TREATED WITH
STROBILANTHES CRISPUS

By

YOGESPIRIYA A/P SHREERAMAN

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia,
In Fulfilment of the Requirements for the Degree of Master of Science

November 2004
Specially dedicated to

My lovely parents,

MR. SHREERAMAN A/L RAMASAMY and
MRS. LALITHA A/P RAJAMANIKAM

My husband,

MR. SURESH A/L PALPANABAN

My brothers, sister in law and their daughter

MR. PUNITHAN
MRS. ALAMELU MANGAI
MR. AMITEN
MISS SRI SHAANKEREY
ANTIOXIDANT ELEMENTS ANALYSIS AND ENZYME ACTIVITIES IN HEPATOCARCINOGENESIS INDUCED RATS TREATED WITH *STROBILANTHES CRISPUS*

By

YOGESPIRIYA A/P SHREERAMAN

November 2004

Chairman: Associate Professor Fauziah Othman, Ph.D

Faculty: Medicine and Health Sciences

This study was conducted to investigate the effect of 5% (w/v) *Strobilanthes crispus* crude extract on rat liver during induced hepatocarcinogenesis. Elemental analysis, was done to support this study on all the liver tissues by energy filter transmission electron microscope (EFTEM) and variable pressure scanning electron microscope (VPSEM). Histological and gross changes of liver evaluation were conducted to observe the cellular and morphological changes during induced hepatocarcinogenesis in rats treated with *S.crispus*. Xenobiotics detoxification enzymes such as aniline hydroxylase (ANH) and glutathione S-transferase (GST) were assayed in liver tissues. Gross examination on liver of rats which were induced with diethyl nitrosamine/acetylaminofluorene (DEN/AAF) showed the presence of nodules, haemorrhages and swelling on liver surface. The 5% (w/v) *Strobilanthes crispus* extract effectively reduced gross changes on liver during induced hepatocarcinogenesis. Meanwhile, histological evaluation revealed that a certain grade of inflammation or necrosis at portal and lobular region and stages of fibrosis
during induced hepatocarcinogenesis was successfully reduced after the administration of *Strobilanthes crispus* extract. Nevertheless, supplementation of *S. crispus* did not fully recover the liver to normal histological feature. This could be due to the short duration of this experiment. Elemental analysis by VPSEM showed that 5% w/v *Strobilanthes crispus* extract contained 63.52% of carbon, 16.56% of oxygen, 0.66% of sodium, 0.08% of magnesium, 11.78% of aluminium, 0.17% of phosphorus, 1.19% of sulphur, 1.66% of chloride, 0.95% of potassium, 0.19% of iron, 0.20% of copper, 2.30% of calcium, 0.39% silicon and 0.35% of argentum. The fresh liver tissue obtained from rats administered with DEN/AAF and treated with *Strobilanthes crispus* extract showed higher percentage distribution of antioxidant elements such as potassium and magnesium when compared to the liver from rats induced with DEN/AAF and untreated rats, DEN/AAF administered and treated with glycyrrhizin rats, normal without treatment rats, normal with *Strobilanthes crispus* supplemented rats and normal with glycyrrhizin supplemented rats. To detect the antioxidant elements such as potassium, calcium, magnesium and iron at ultrastructural level, EFTEM was used. By utilizing EFTEM, the distributions of these elements were also found to be higher in cancer with *S.crispus* group compared to other groups. This may suggest showed that tumor cells has high uptake of these elements from *S.crispus* extract. Meanwhile, DEN/AAF induced rats showed an increase activity of drug/carcinogen detoxification enzymes i.e. GST and ANH. However, 5% w/v *S.crispus* extract effectively inhibit the activity of these enzymes in DEN/AAF induced rats. *S.crispus* which is rich with antioxidant elements such as potassium, magnesium, calcium and iron play important role during carcinogenesis. Thus, *S.crispus* can be considered as potential chemopreventive agent
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

ANALISIS ELEMEN-ELEMEN ANTIOKSIDAN DAN AKTIVITI ENZIM SEMASA KARSIINOGENESIS HEPAR DIARUH DALAM TIKUS DIRAWAT DENGAN STROBILANTHES CRISPUS

Oleh

YOGESPIRIYA A/P SHREERAMAN

Mei 2004

Pengerusi: Profesor Madya Fauziah Othman, Ph.D

Fakulti: Perubatan dan Sains Kesihatan

lobular hepar dan peringkat fibrosis semasa karsinogenesis hepar diaruh berjaya
dikurangkan setelah diberi 5% ekstrak *Strobilanthes crispus* kepada tikus.
Walaubagaimanapun, *Strobilanthes crispus* tidak dapat merawat perubahan ini ke tahap
normal. Ini mungkin disebabkan tempoh eksperimen yang singkat. Elemen-elemen yang
dianalisis dengan VPSEM menunjukkan bahawa 5% ekstrak *Strobilanthes crispus* terdiri
daripada 63.52% karbon, 16.56% oksigen, 0.66% natrium, 0.08% magnesium, 11.78%
aluminium, 0.17% fosforus, 1.19% sulfur, 1.66% klorin, 0.95% kalium, 0.19% besi,
0.20% kuprum, 2.3% kalsium, 0.39% silikon dan 0.35% argentum. Tisu hepar segar dari
kumpulan tikus yang disuntik dengan DEN/AAF dan dirawat dengan *Strobilanthes
crispus* menunjukkan peratus taburan elemen-elemen antioksidan seperti kalium dan
magnesium yang tinggi jika dibandingkan dengan tisu hepar daripada tikus yang disuntik
dengan DEN/AAF yang tidak dirawat, tikus yang disuntik dengan DEN/AAF dan dirawat
dengan gliserizin, tikus normal, tikus normal yang diberi *Strobilanthes crispus* dan tikus
normal yang diberi gliserizin. Bagi menganalisis elemen-elemen antioksidan seperti
kalium, kalsium, magnesium dan besi pada peringkat ultra struktur, EFTEM digunakan.
Menurut EFTEM, taburan elemen-elemen ini didapat paling banyak dalam kumpulan
kanser dengan rawatan *Strobilanthes crispus* jika dibandingkan dengan kumpulan-
kumpulan lain. Ini menunjukkan sel-sel tumor mengambil elemen-elemen tersebut dari
ekstrak *Strobilanthes crispus* untuk memenuhi keperluannya. Sementara itu, suntikan
DEN/AAF ke atas tikus menunjukkan peningkatan aktiviti enzim yang menyakitkan
drug atau karsinogen seperti GST dan ANH pada hepar. Walaubagaimanapun, 5%
Strobilanthes crispus dapat merencat aktiviti enzim-enzim ini dengan efektif pada tikus
yang disuntik dengan DEN/AAF. *Strobilanthes crispus* adalah kaya dengan elemen-
ACKNOWLEDGEMENTS

First and foremost, I must thank God for showing and leading me to a correct path of life.

I would like to express my sincere appreciation and gratitude to my supervisor, Associate Professor Dr. Fauziah Othman for her guidance and optimism which proved to be indispensable for the success of this piece of work.

My extended gratitude goes to my co-supervisor Associate Professor Dr. Asmah Rahmat for her great assistance and guidance particularly in the subject of biochemistry. Also special thanks due to Associate Professor Dr. Patimah Ismail, my co-supervisor, who gave me commitment and support to conduct my research. The same appreciation goes to Dr. Parichehr Hanachi for her assistance and invaluable suggestions.

It is with great honor and appreciation that I would like to give accolade to my husband Mr. Suresh a/l Palpanaban who never failed to amaze me with his support, encouragement and help during my hard and easy times.

My next appreciation is conferred to the staffs of Microscopy and Microanalysis Unit, Laboratory of Enzyme and Microbial Technology; Miss Nooraini Mohd.Ain, Miss Azilah Abdul Jalil, Mr. Ho Oi Kuan, Mr. Rafiuz Zaman Haroun,
Mrs. Faridah Akmal and Miss Surya Azura Jamaluddin. And a lots of thanks to Medicine and Health Sciences Faculty staffs especially to Mrs. Siti Muskinah, Mr. Ramli, Mrs. Maznah, Mr. Simon and Mr. Zamrus.

I also would like to convey my gratitude to my fellow friends; Hadiatul Hanim Hidayat Topek, Hernani Mokri, Mahani Mahadi, Dessy Arisanty, Norhayati Monzai, Zolkapli Eshak, Tengku Shahrul, Suherman Jaksa and Phang Mun Yee for their friendship and cooperation.

Above all, I own my humble achievements to my lovely parents Mr. Shreeraman and Mrs. Lalitha. Their insatiable love and care for me have been a fantastic source of inspiration. My special thanks go to my brothers and sister in law, Mr. Punithan, Mrs. Alamelu Mangai and Mr. Amiten for their love and continuous support. Not forget to thank my family in law, Mr. and Mrs. Palpanaban and family for their love and care.

There are still a million people I could thank but there could never be enough room, so if your name is missing, know that you’re still very appreciated.
I certify that an Examination Committee met on 3rd November 2004 to conduct the final examination of Yogespiriya A/P Shreeraman on her Master of Science thesis entitled “Antioxidant Elements Analysis and Enzyme Activities in Hepatocarcinogenesis Induced Rats Treated with Strobilanthes crispus” in accordance with University Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

AHMAD BUSTAMAM, Ph.D.
Lecturer
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Chairman)

SHARIDA FAKURAZI, Ph.D.
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

THUAIBAH HASHIM, MD
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

YASMIN ANUM, Ph.D.
Associate Professor
Faculty of Medicine
Universiti Kebangsaan Malaysia
(Independent Examiner)

GULAM RUSUL RAHMAT ALI, Ph.D.
Professor/Deputy Dean of Graduate School
Universiti Putra Malaysia

Date:
This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the supervisory committee are as follows:

FAUZIAH OTHMAN, Ph.D.
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Chairman)

ASMAH RAHMAT, Ph.D.
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

PATIMAH ISMAIL, Ph.D.
Associate Professor
Faculty of Medicine and Health Sciences
University Putra Malaysia
(Member)

AINI IDERIS, Ph.D.
Professor/Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

YOGESPIRIYA D/O SHREERAMAN

Date:
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>V</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>viii</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>x</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xvii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xix</td>
</tr>
<tr>
<td>LIST OF PLATES</td>
<td>xx</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxii</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION

2 LITERATURE REVIEW

2.1 Liver Cancer

2.2 Microscopic features of HCC

2.3 Diethylnitrosamine (DEN)

2.4 2-Acetylaminofluorene (2-AAF)

2.5 Chemical carcinogenesis

2.5.1 Necrosis

2.5.2 Apoptosis

2.6 Diet and cancer

2.7 *Strobilanthes crispus*

2.7.1 The uses of *Strobilanthes crispus*

2.7.2 Chemical composition of *Strobilanthes crispus* leaves

2.8 Antioxidants

2.9 Free Radicals

2.10 Glycyrrhizin

2.11 Minerals / Trace elements

2.12 Transmission electron microscope (TEM)

2.13 Variable pressure scanning electron microscope (VPSEM)

2.14 Phase I and phase II enzymes

2.14.1 Aniline hydroxylase (ANH)
GROSS STUDY OF LIVER INDUCED HEPATOCARCINOGENESIS FROM RATS TREATED WITH *STROBILANTHES CRISPUS*

3.1 Introduction

3.2 Materials and Methods
 3.2.1 Maintaining rats
 3.2.2 Diethylnitrosamine (DEN) preparation
 3.2.3 Acetaminofluorene (AAF) preparation
 3.2.4 *Strobilanthes crispus* leave extract preparation

3.3 *In vivo* bioassay
 3.3.1 Study group
 3.3.2 Animal treatment
 3.3.3 Termination of experiment

3.4 Statistical analysis

3.5 Results
 3.5.1 Relative weight of liver to body weight of rat
 3.5.2 Gross examination of rat liver during induced hepatocarcinogenesis

3.6 Discussion

HISTOLOGY OF RAT LIVER INDUCED HEPATOCARCINOGENESIS FROM RATS TREATED WITH *STROBILANTHES CRISPUS*

4.1 Introduction

4.2 Materials and Methods
 4.2.1 Sample preparation for lesion scoring

4.3 Statistical analysis

4.4 Result
 4.4.1 Lesion scoring of portal area
 4.4.2 Lesion scoring of lobular area of liver during
 4.4.3 Stages of fibrosis of liver

4.5 Discussion

ELEMENTAL ANALYSIS BY ENERGY FILTER TRANSMISSION ELECTRON MICROSCOPE (EFTEM)

5.1 Introduction

xv
5.2 Materials and Methods
- **5.2.1** Sample preparation for transmission electron microscope
- **5.2.2** Sectioning
- **5.2.3** Elemental mappings by energy filter Transmission electron microscope (EFTEM)
- **5.2.4** Scoring of elemental distribution

5.3 Statistical analysis

5.4 Results
- **5.4.1** Mean score of calcium distribution
- **5.4.2** Mean score of potassium distribution
- **5.4.3** Mean score of magnesium distribution
- **5.4.4** Mean score of iron distribution

5.5 Discussion

6 ELEMENTAL ANALYSIS BY VARIABLE PRESSURE SCANNING ELECTRON MICROSCOPE (VPSEM) ATTACHED TO ENERGY DISPERSIVE X-RAY (EDX)
- **6.1** Introduction
- **6.2** Materials and Methods
- **6.3** Statistical analysis
- **6.4** Results
 - **6.4.1** Percentage distribution of magnesium
 - **6.4.2** Percentage distribution of potassium
- **6.5** Discussion

7 ANILINE HYDROXYLASE AND GLUTATHIONE S-TRANSFERASE ENZYMES ACTIVITIES DURING HEPATO-CARCINOGENESIS TREATED STROBILANTHES CRISPUS
- **7.1** Introduction
- **7.2** Materials and Methods
 - **7.2.1** Liver cytosol and microsomal preparation
 - **7.2.2** Aniline hydroxylase (ANH) enzyme assay
 - **7.2.3** Glutathione s-transferase (GST) assay
 - **7.2.4** Protein analysis
- **7.3** Statistical analysis
- **7.4** Results
 - **7.4.1** Aniline hydroxylase (ANH) activity
 - **7.4.2** Glutathione s-transferase (GST) activity
- **7.5** Discussion
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Experimental design of rats during induced hepatocarcinogenesis</td>
<td>36</td>
</tr>
<tr>
<td>2.</td>
<td>Relative weight (liver weight/body weight) of rat during hepatocarcinogenesis treated with Strobilanthes crispus</td>
<td>40</td>
</tr>
<tr>
<td>3.</td>
<td>Number of rats with nodules in liver during induced hepatocarcinogenesis</td>
<td>44</td>
</tr>
<tr>
<td>4.</td>
<td>The ratio of acetone: resin during sample preparation for infiltration technique.</td>
<td>50</td>
</tr>
<tr>
<td>5.</td>
<td>The lesion score of portal area of the liver during induced hepatocarcinogenesis in rats treated with S.crispus and glycyrrhizin at 2, 4, 10 and 12 weeks post induction</td>
<td>54</td>
</tr>
<tr>
<td>6.</td>
<td>The lesion score of lobular area of the liver during induced hepatocarcinogenesis in rats treated with S.crispus and glycyrrhizin at 2, 4, 10 and 12 weeks post induction</td>
<td>56</td>
</tr>
<tr>
<td>7.</td>
<td>The stages of fibrosis of liver during induced hepatocarcinogenesis in rats treated with S.crispus and glycyrrhizin at 2, 4, 10 and 12 weeks post induction</td>
<td>58</td>
</tr>
<tr>
<td>8.</td>
<td>Scoring of antioxidant elements distribution using EFTEM</td>
<td>66</td>
</tr>
<tr>
<td>9.</td>
<td>Mean score of calcium distribution in liver during induced hepatocarcinogenesis in rats treated with Strobilanthes crispus by EFTEM</td>
<td>68</td>
</tr>
<tr>
<td>10.</td>
<td>Mean score of potassium distribution in liver during induced hepatocarcinogenesis in rats treated with Strobilanthes crispus by EFTEM</td>
<td>70</td>
</tr>
<tr>
<td>11.</td>
<td>Mean score of magnesium distribution in liver during induced hepatocarcinogenesis in rats treated with Strobilanthes crispus by EFTEM</td>
<td>72</td>
</tr>
</tbody>
</table>
12. Mean score of iron distribution in liver during induced hepatocarcinogenesis in rats treated with *Strobilanthes crispus* by EFTEM
74

13. Percentage distribution of magnesium in rat liver during induced hepatocarcinogenesis
89

14. Percentage distribution of potassium in rat liver during induced hepatocarcinogenesis
91

15. The activity of aniline hydroxylase (ANH) (nmol \(p \)-aminophenol liberated/mg protein/min) during induced hepatocarcinogenesis in rats treated with *Strobilanthes crispus*
99

16. The activity of glutathione s-transferase (GST) (nmol/min/mg protein) during induced hepatocarcinogenesis in rats treated with *Strobilanthes crispus*
102
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>The chemical structure of diethylnitrosamine</td>
<td>6</td>
</tr>
<tr>
<td>2.</td>
<td>Tumor promoters and progressors</td>
<td>12</td>
</tr>
<tr>
<td>3.</td>
<td>The mechanisms of cancer chemoprevention by antioxidants</td>
<td>20</td>
</tr>
<tr>
<td>4.</td>
<td>Major sources of free radicals in the body and consequence of Free radical damage</td>
<td>22</td>
</tr>
<tr>
<td>5.</td>
<td>The role of Phase I and Phase II enzymes in carcinogen metabolism</td>
<td>29</td>
</tr>
</tbody>
</table>
LIST OF PLATES

<table>
<thead>
<tr>
<th>Plate</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>The features of Strobilanthes crispus leaves</td>
<td>15</td>
</tr>
<tr>
<td>2.</td>
<td>The gross view of liver surface which treated with DEN/AAF</td>
<td>44</td>
</tr>
<tr>
<td>3.</td>
<td>The gross view of DEN/AAF induced liver surface after treated with Strobilanthes crispus</td>
<td>45</td>
</tr>
<tr>
<td>4.</td>
<td>Light micrograph of the portal tract surrounded by severe necrotic cells (score +4)</td>
<td>59</td>
</tr>
<tr>
<td>5.</td>
<td>Light micrograph of bridging necrotic cells between portal tracts (score +4)</td>
<td>59</td>
</tr>
<tr>
<td>6.</td>
<td>Light micrograph of septa fibrosis (score +3)</td>
<td>60</td>
</tr>
<tr>
<td>7.</td>
<td>Transmission electron micrograph of calcium distribution in liver section from rat induced with DEN/AAF</td>
<td>75</td>
</tr>
<tr>
<td>8.</td>
<td>Transmission electron micrograph of calcium distribution in liver section from rat induced with DEN/AAF and treated with Strobilanthes crispus</td>
<td>75</td>
</tr>
<tr>
<td>9.</td>
<td>Transmission electron micrograph of calcium distribution in liver section from normal rat</td>
<td>75</td>
</tr>
<tr>
<td>10.</td>
<td>Transmission electron micrograph of potassium distribution in liver section from rat induced with DEN/AAF</td>
<td>76</td>
</tr>
<tr>
<td>11.</td>
<td>Transmission electron micrograph of potassium distribution in liver section from rat induced with DEN/AAF and treated with Strobilanthes crispus</td>
<td>76</td>
</tr>
<tr>
<td>12.</td>
<td>Transmission electron micrograph of potassium distribution in liver section of normal rat</td>
<td>76</td>
</tr>
<tr>
<td>13.</td>
<td>Transmission electron micrograph of magnesium distribution in liver section from rat induced with DEN/AAF</td>
<td>77</td>
</tr>
<tr>
<td>14.</td>
<td>Transmission electron micrograph of magnesium distribution in liver section from rat induced with DEN/AAF and treated</td>
<td></td>
</tr>
</tbody>
</table>
15. Transmission electron micrograph of magnesium distribution in liver section from normal rat

16. Transmission electron micrograph of iron distribution in liver section from rat induced with DEN/AAF

17. Transmission electron micrograph of potassium distribution in liver section from rat induced with DEN/AAF and treated with Strobilanthes crispus

18. Transmission electron micrograph of potassium distribution in liver section of normal rat
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCC</td>
<td>hepatocellular carcinoma</td>
</tr>
<tr>
<td>DEN</td>
<td>diethylnitrosamine</td>
</tr>
<tr>
<td>AAF</td>
<td>acetylaminofluorene</td>
</tr>
<tr>
<td>PCD</td>
<td>programmed cell death</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
<tr>
<td>DMBA</td>
<td>7,12-di-methylbenz[a]anthracene</td>
</tr>
<tr>
<td>EGCG</td>
<td>epigallocatechin gallate</td>
</tr>
<tr>
<td>AFB</td>
<td>aflatoxin B1</td>
</tr>
<tr>
<td>TLC</td>
<td>thin layer chromatography</td>
</tr>
<tr>
<td>UV</td>
<td>ultraviolet</td>
</tr>
<tr>
<td>ROS</td>
<td>reactive oxygen species</td>
</tr>
<tr>
<td>BHA</td>
<td>butylated hydroxyanisole</td>
</tr>
<tr>
<td>BHT</td>
<td>butylated hydroxytoluene</td>
</tr>
<tr>
<td>ATP</td>
<td>adenine triphosphate</td>
</tr>
<tr>
<td>NF</td>
<td>nuclear factor</td>
</tr>
<tr>
<td>SARS</td>
<td>severe acute respiratory syndrome</td>
</tr>
<tr>
<td>HIV</td>
<td>human immunodeficiency virus</td>
</tr>
<tr>
<td>PTH</td>
<td>parathyroid hormone</td>
</tr>
<tr>
<td>EELS</td>
<td>electron energy loss spectroscopy</td>
</tr>
<tr>
<td>rpm</td>
<td>revolution per minute</td>
</tr>
<tr>
<td>DNA</td>
<td>deoxyribonucleic acid</td>
</tr>
<tr>
<td>TEM</td>
<td>transmission electron microscope</td>
</tr>
<tr>
<td>EFTEM</td>
<td>energy filter transmission electron microscope</td>
</tr>
<tr>
<td>VPSEM</td>
<td>variable pressure scanning electron microscope</td>
</tr>
<tr>
<td>SEM</td>
<td>scanning electron microscope</td>
</tr>
<tr>
<td>ESEM</td>
<td>environmental scanning electron microscope</td>
</tr>
<tr>
<td>EDX</td>
<td>energy dispersive x-ray</td>
</tr>
<tr>
<td>NADPH</td>
<td>reduced nicotinamide adenine dinucleotide phosphate</td>
</tr>
<tr>
<td>ANH</td>
<td>aniline hydroxylase</td>
</tr>
<tr>
<td>GST</td>
<td>glutathione s-transferase</td>
</tr>
<tr>
<td>GSH</td>
<td>glutathione</td>
</tr>
<tr>
<td>GGT</td>
<td>γ-glutamyl transpeptidase</td>
</tr>
<tr>
<td>ALP</td>
<td>alkaline phosphate</td>
</tr>
<tr>
<td>GPT</td>
<td>glutamate pyruvate transaminase</td>
</tr>
<tr>
<td>RDA</td>
<td>recommended daily allowance</td>
</tr>
<tr>
<td>ANOVA</td>
<td>analysis of variance</td>
</tr>
<tr>
<td>w/v</td>
<td>weight/volume</td>
</tr>
<tr>
<td>e</td>
<td>electron</td>
</tr>
<tr>
<td>-OH</td>
<td>hydroxyl</td>
</tr>
<tr>
<td>OH</td>
<td>hydroxide</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

Around 10 million new cancer patients are diagnosed worldwide each year and these rates will increase to 20 million by the year 2020 (Sikora, 1999). In 1995, malignant neoplasm is the major cause of death (45%) in Government Hospitals of Malaysia, which is 2.8 times higher than that of heart disease (16%) (Malaysia’s Ministry of Health, 1995). Thus, despite advances in early detection and treatment, overall death rates from cancer have remained largely unchanged since the early 1970s, suggesting the need for a stronger research focus on prevention (Nestle, 1997).

Hepatocellular carcinoma is a cancer arising from the liver. Although the liver is made up of different cell types (e.g. Kupffer cells, hepatocytes, endothelial cells, sinusoidal and fat-storing cells) but the majority of primary liver cancers (over 90 to 95%) arises from hepatocytes and is called hepatocellular carcinoma (Fong, 2002). Hepatocarcinogenesis is a transformation process of normal liver cell into a cancerous cell which involved initiation, promotion and progression stages (Lai and Peter, 1999).

More than 3, 000 plant species have been used as anticancer agents (Lewis and Elvin-Lewis, 1977). This subject has received a lot of attention from both consumers and scientists during recent decades (Poppel and Berg, 1997). A lot of studies reported that various kinds of fruits, green and yellow vegetables, particularly cruciferous vegetables
have their anticancer activity towards human (Kusamran et al., 1998). In Malaysia, about 1200 plant species have been reported to have potential pharmaceutical value and some of these have been used as herbal medicine (Soepadmo, 1991). One example of medicinal plant found in Malaysia and Indonesia which has pharmacological potential is *Strobilanthes crispus*. In Indonesia, this plant has been used as antidiabetic, diuretic, antilytic and laxative agent (Sunarto, 1977).

In this study, the anticancer effect of *Strobilanthes crispus* was investigated, *in vivo*. The anticarcinogenic effect of 5% (w/v) *Strobilanthes crispus* during hepatocarcinogenesis has been reported by Elizabeth, (1999) and at this concentration, the extract was found to be very effective in treating hepatocarcinogenesis. Another study by Suherman et al. (2004) who tested 1%, 2.5%, 5%, 7.5% and 10% doses of *Strobilanthes crispus* extract on rats during hepatocarcinogenesis reported that among the doses, 5% (w/v) is optimum for supplementation.

Thus, in this present study, 5% (w/v) *Strobilanthes crispus* crude extract was chosen to treat DEN/AAF induced hepatocarcinogenesis. Atomic absorption spectroscopy (AAS) was not chosen to analyze the elements in this present study because in a study by Maznah et al. (2000), AAS has been used to analyze elements in *Strobilanthes crispus* crude extract. Thus in this study, EFTEM and VPSEM was chosen because this electron microscopes can analyze the antioxidant element at ultracellular level in liver tissue and no previous study has been carried out using these hi-technology equipments so far. While, gas chromatography mass spectroscopy (GCMS) also was not chosen because this