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Abstract Groundwater management can be effectively implemented by mapping

groundwater contamination. Intense agricultural activities and land overexploitation have

resulted in groundwater contamination, which is becoming a critical issue, specifically in

areas where fertilizers are extensively used on large plantations. The goal of this study was

to develop an integrated DRASTIC model with a frequency ratio (FR) as a novel approach.

Two new hybrid methods namely single-parameter sensitivity analysis (SPSA) and an

analytical hierarchy process (AHP) are also implemented for adjusting feature weights to

local settings. The FR is used for DRASTIC model rates, whereas both SPSA and AHP are

used for DRASTIC weights. The FR-DRASTIC, FR-SPSA and FR-AHP methods are

developed; nitrate samples from the same month in different years are used for analysis and

correlation (May 2010 and May 2012). The first nitrate samples are interpolated using the

Kriging approach. The Kerman plain is used as an example, which is located in south-

eastern part of Iran. Additionally, the new methods are employed in the study area to

compare with each other and the original DRASTIC model. The validation results

exhibited that using FR approach improved the correlation between vulnerability index and

nitrate concentrations compared with original DRASTIC vulnerability correlation which

was 0.37. The results indicated that the new hybrid methods exhibited higher correlation

0.75 in the FR-DRASTIC model. Correlations of the FR-SPSA and FR-AHP approaches

were 0.77 and 0.80. Hence, the new hybrid methods are more effective and provide

reasonably good results. Furthermore, quantitative measures of vulnerability offer an

excellent opportunity to effectively prevent as well as reduce contamination.
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1 Introduction

Groundwater pollution is becoming a prevalent issue, particularly in agricultural lands

where fertilizers are largely used on plantations. Because groundwater pollution is

imperceptible and long-term effects are costly, groundwater contamination prevention is

indispensable for efficient groundwater resource management. Evaluating groundwater

vulnerability has been recently identified as an important method for environmental

management (Yu et al. 2010). Groundwater vulnerability is relative, dimensionless and

non-measurable feature which relies on geological and hydrogeological aquifer charac-

teristics (Antonakos and Lambrakis 2007; Fijani et al. 2013).

Agriculture is the main activity in majority of the lands; therefore, fertilizers are

extensively used in this area. The application of alternative methods and environmental

management can be presented through the DRASTIC model. The vulnerability results

obtained through this model are considered unreliable because the area specifics are not

fulfilled due to the selected features as well as the adopted feature ratings and weights used

by the model. Therefore, the DRASTIC model is an easy target for criticism. Numerous

studies have suggested modifications in the DRASTIC-based algorithms to develop this

method further (Afshar et al. 2007; Antonakos and Lambrakis 2007; Carvalho and Pacheco

2009; Pacheco and Sanches Fernandes 2013).

Several intrinsic vulnerability parameters, e.g., depth to groundwater, net recharge and

soil media, have been altered due to increased human activities. Recently, nitrate has been

used as a good indicator for groundwater contamination sources and risk assessment

(Stigter et al. 2008; Farjad et al. 2012; Neshat et al. 2013; Li and Merchant 2013; Chen

et al. 2013; Boy-Roura et al. 2013; Chica-Olmo et al. 2014). Various approaches have been

developed to evaluate groundwater vulnerability (Masetti et al. 2009). Vulnerability

assessments must be objective, scientific and based on accurate evidence (Mohammadi

et al. 2009). The available techniques for the evaluation of groundwater vulnerability

include (1) overlay index methods (Aller et al. 1985), (2) process-based models (Neukum

and Azzam 2009) and (3) statistical methods (Masetti et al. 2009). The overlay index

methods include a set of subjective ratings and a weight-allocating scheme. The DRASTIC

method is the most commonly used overlay index technique to evaluate intrinsic vulner-

ability (Aller et al. 1987). Process-based methods simulate contaminant subsurface flow

and transport (Kauffman and Chapelle 2010). Moreover, statistical methods range from

simple descriptive statistics to more complex regression analyses that synthesize explan-

atory variables to identify the importance of affected parameters on groundwater vulner-

ability. To produce scientifically strong information for water resource managers, the

process-based and statistical methods are preferred over the index overlying methods,

which rely on professional judgment (Focazio et al. 2008). Although groundwater vul-

nerability models generally include similar parameters, the models apply different data

integration approaches (Li and Merchant 2013). The DRASTIC method is relatively easy

to implement. However, the method has been indicated to produce varied results when

applied to a single region (Gogu et al. 2003; Frind and Martin 2004). Therefore, statistical

models allow researchers to appropriately choose parameters with respect to the specific

study area and to immediately investigate the spatial distribution effects of contamination

(Masetti et al. 2009).

A method such as probabilistic frequency ratio (FR) approach has not been applied for

groundwater vulnerability assessment which is different in its application compared with

other studies. The FR was used in landslide susceptibility assessment (Pradhan et al. 2010;

Yalcin et al. 2011; Pradhan and Lee 2010a; Nourani et al. 2014; Demir et al. 2013;
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Mohammady et al. 2012), groundwater potential mapping (Oh et al. 2011; Ozdemir 2011;

Nampak et al. 2014) and other environmental disciplines. Also, a GIS-based combination

of analytical hierarchy process (AHP) with DRASTIC model was applied as an efficient

tool for groundwater vulnerability evaluation (Neshat et al. 2014a). Saaty (1980) proposed

the process of AHP, which is a multi-criteria decision-making (MCDM) technique. AHP

has been generally used in solving many complicated decision-making problems (Anane

et al. 2012; Althuwaynee et al. 2014; Pourghasemi et al. 2012; Feizizadeh and Blaschke

2013; Roodposhti et al. 2014; Demir et al. 2013; Stefanidis and Stathis 2013; Neshat et al.

2014a; Youssef et al. 2011). Afterward, the single-parameter sensitivity analysis (SPSA)

offers useful information on the effect of weighting values allocated to each parameter and

supports the analyst in judging the importance of subjectivity (Gogu et al. 2003; Babiker

et al. 2005; Huan et al. 2012). Identification and qualitative comparison of sensitivity

analysis methods that have been used across various disciplines (Christopher Frey and Patil

2002).

In this study, a probabilistic-based statistical model, i.e., the FR, is an original idea

applied as a pioneering approach to optimize the DRASTIC model rates. First, the FR for

DRASTIC model rates is combined with the original DRASTIC model weights. Second,

two new hybrid methods are applied which are based on integrating the FR rates with

SPSA and AHP as weights. Then, the derived outcomes are compared. The correlation

between the predicted and actual contamination occurrences (nitrate concentration), their

complexity and their data requirements are discussed. Nitrates are chosen to indicate

contamination because they are the primary human-supplied contaminant in the environ-

ment of the study area and have been suggested as an explanatory index for the ground-

water quality decline (USEPA 1996). Moreover, in many studies, nitrate was applied for

modification the rate of DRASTIC model with surveys on the real quality of water from

wells (Rupert 2001; Panagopoulos et al. 2006; Antonakos and Lambrakis 2007; Javadi

et al. 2011; Mishima et al. 2011; Neshat et al. 2014a, b).

2 Study area and data used

The study area is located in the Kerman plain (Fig. 1), which is an arid and semiarid region

located in southeastern Iran and encompasses approximately 978 km2. The altitude ranges

from 1,633 to 1,980 m above sea level. The average annual rainfall in 2011 was 108.3 mm.

Moreover, the climate is characterized by hot and dry summers, relatively rainy winters,

and short spring and autumn seasons. Within a typical water year, nearly 2 months are

glacially related, i.e., January and February. According to Water organizations of Kerman

during recent years, this phenomenon has decreased due to climate change. Because pis-

tachio is the primary agricultural product in the study area, groundwater is extremely

essential for the economic survival of this region.

The geology of Kerman plain consists of Cretaceous and Eocene conglomerates (PC),

intrusive rocks (gp), Eocene and Neogene volcanism, and Neogene or younger sediments.

In the study area, the aquifer media is primarily composed of marl and conglomerate rocks

in the south and a small area in the northwest. Fine-medium sand is elongated across the

north and northeast. Deposits of silt and clay are located in the central region. Moreover,

the immense sand deposits with a very low fine-grained material ratio are considered

gravel and sand. Glacial till was introduced by Aller et al. (1987) and Rahman (2008),

which represents a mixture of gravel, sand, silt and clay. The vadose zone and soil media

perform important roles in groundwater pollution vulnerability (Huan et al. 2012). The soil
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type in the study area is primarily clay loam, gravel, non-shrinking loam and non-aggre-

gated clay, sand, sandy loam and silty loam. The available soil media layer represents a

sand section with high permeability located to the north and south in the study area.

The depth from the surface to the groundwater table in the Kerman plain typically varies

from 15 m to more than 30 m. Therefore, the depths were classified into three classes

(15–23, 23–30 and[30 m); most values were placed in the third class. Given that the study

area is located in an arid or semiarid region, two classes less than 30 m indicate irrigation

return flow. Rainfall infiltration, irrigation return flow and absorption wells are the primary

groundwater recharge sources in the area. The total net recharge in the study area is 186.06

million cubic meters per year (Mm3/y).

The topography was derived from a digital elevation model using a topographic map

(1:25,000). The slopes typically range from 0 to 2 and 2–6 %. The vadose zone types

primarily include silt–clay and sand–gravel in the west. A small region situated in the

northeast exclusively contains gravel and sand.

The maximum electrical conductivity (EC) in the study area is 3,880 lmhos per cen-

timeter (lS; the average EC is 2,700 lS. Moreover, the minimum EC is 1,100 lS. In

addition, the southeastern regions contain the maximum EC. Available nitrate measure-

ment sampling was collected during the period 2010–2012 from 27 agricultural wells. The

model was calibrated with the first and second nitrate samples collected in May 2010 and

May 2012, respectively. Nitrate samples in May 2010 used to calibrate the rates of

DRASTIC due to applying FR and nitrate samples in May 2012 used for correlation

coefficient. These samples were used to create a relationship between nitrate concentration

and groundwater vulnerability. All of the data that include seven hydrogeological factors

and nitrate samples are explained in Table 1, which are obtained from different sources.

Fig. 1 Location map
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3 Methodology

3.1 DRASTIC model

The DRASTIC model (Aller et al. 1987) is the most popular subjective rating method to

evaluate intrinsic groundwater vulnerability. The intrinsic vulnerability is independent of

specific contamination and is considered according to the geological, hydrogeological and

hydrological characteristics of the area (Zwahlen 2004). The seven hydrological layers

designated by Aller et al. (1987) were denoted by the acronym ‘‘DRASTIC,’’ which

assigned a rating from 1 to 10 and a weighting from 1 to 5 to each parameter. The model

then used seven parameters to estimate the vulnerability index: depth to water, net

recharge, aquifer media, soil media, topography, vadose zone impact and hydraulic con-

ductivity. The original DRASTIC index was calculated by applying a linear combination of

all parameters:

VulnerabilityIndex VIð Þ ¼ DRDW þ RRRW þ ARAW þ SRSW þ TRTW þ IRIW þ CRCW

ð1Þ

where the vulnerability index (VI) represents the DRASTIC result and the subscripts W and

R represent the importance of weight and rate, respectively, for each parameter. A model

deficiency is the innate subjectivity in assigning the rating value and relative weighting

(Saidi et al. 2011). However, its preference cannot be disregarded. The intrinsic vulnera-

bility using the DRASTIC method compared with other models can be assessed by various

hydrogeological parameter types and requires a moderately small volume of data (Wang

et al. 2012).

3.2 Nitrate concentration assessment

Nitrate concentration was chosen as the initial contamination in the Kerman plain because

of the intensive agricultural activities and widespread use of fertilizer in this region. Nitrate

normally penetrates the surface and proceeds into underground water. Sampling and

analysis were carried out on 27 agricultural wells.

According to Panagopoulos et al. (2006), Antonakos and Lambrakis (2007) and Neshat

et al. (2013), an area should comply with the following three conditions for optimization of

the rates of DRASTIC model based on the nitrate concentration: (1) the mean surface

nitrate concentration should be an effect of the agricultural activities; (2) the distribution

area should be relatively uniform; and (3) nitrate leaching occurs because of surface

recharge over long periods. Based on these conditions, the nitrate samples in 2010 are

interpolated using the ordinary Kriging interpolation algorithm to obtain nitrate concen-

trations in each factor’s range in the area (Fig. 2). It is also among the most common

interpolating methods in agriculture practices (Mishra 2009) which used as a geostatistical

estimation method in the class of the minimum error variance estimation (Baalousha 2010;

Mendes and Ribeiro 2010). This interpolation technique is implemented because the goal is

to optimize the rates of DRASTIC model, which has not been applied thus far. In quan-

titative studies, the number of examined objects, such as wells, is countable or visible.

However, nitrate can be distributed anywhere underground and may not have existed in

wells.
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Using the Kriging variance of estimate is independent of actual measurements from the

field, which is the best linear unbiased estimator of an unknown field. The ordinary Kriging

interpolation equation is as follows:

Z � x0ð Þ ¼
Xn

i¼1
nkiZðxiÞ ð2Þ

where Z*(x0) is the estimated value, n is the number of points, Z(xi) is the measured value

at point xi and ki is the Kriging weight.

3.3 Frequency ratio (FR)

Frequency ratio approach as a bivariate statistical analysis provides a new framework to

assess groundwater vulnerability through calibration the rates of DRASTIC parameter

based on the spatial distribution of nitrate samples and hydrogeological factors.

To evaluate groundwater vulnerability in the study area, it is pertinent to discuss the

circumstances that can cause groundwater contamination. The FR model is based on the

observed relationships between the distribution of nitrate samples and each of the seven

DRASTIC layers to determine the correlation between nitrate samples and DRASTIC

parameters. By using the FR model, the spatial relationships between the nitrate samples

and parameters, which contribute to the groundwater vulnerability map, can be ascertained.

The FR was computed from the analysis of nitrate association and attributed factors.

Therefore, the FRs of each factor type or range were calculated from their relationships

with the nitrate samples. The processes can be understood as follows:

FR ¼ ðA=BÞ=ðC=DÞ ¼ E=F ð3Þ

where A is the area of a class or range for each DRASTIC parameters; B is the total area of

each parameter; C is the total number of nitrates occurrence in the class of each parameter;

D is the number of the total nitrates in the study area; E is the percentage of nitrates in the

class of each parameter; F is the percentage of area in the class for each parameter.

In defining the FR, the nitrate concentration area ratio was computed in the range of

each DRASTIC layer factor; the area ratio for the range of each factor relative to the total

area was calculated. Then, the probability for each parameter range was computed by

dividing the nitrate concentration ratio by the area ratio; a value of 1 is an average ratio. If

Table 1 Data sources used for preparation of DRASTIC parameters

Data type Sources

1. Hydrogeological data Meteorological organization of Kerman

2. Geology map Geological survey of IRAN

3. Soil map Soil and water research institute of Kerman

4. Topography Water organizations of Kerman

5. Wells Water organizations of Kerman

6. Hydraulic conductivity Water organization of Kerman

7. Geological profile Water organization of Kerman

8. Groundwater balance of Kerman
plain

Water organization of Kerman

9. Sample wells Two times sampling based on surveys in the study area using GPS
technique
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the ratio is [1, a higher correlation between the factor range and nitrate concentration is

indicated. Moreover, if the ratio is \1, a lower correlation is expected (Pradhan and Lee

2010b; Yalchin et al. 2011; Umar et al. 2014)

3.4 Analytical hierarchy processes (AHP)

The AHP method proposed by Saaty (1980) provides a readily applied approach to solve

complex problems, which has been environmentally used in site selection and land allo-

cation. The method is a multi-criteria decision-making method that allows the user to

obtain a priority scale that is derived from a set of alternatives. To apply this method, it is

essential to decompose a complex unstructured subject into its constituent factors, organize

these factors in a hierarchical order, assign numerical values to subjective judgments on the

relative importance of each factor and combine the judgments to decide the allocated

priorities for these factors (Saaty and Vargas 2001). Constructing a set of pairwise com-

parison matrices (PCMs) is the most important component of the AHP method, which

permits the comparison between various criteria. In this study, the PCM was completed

through 13 expert judgments.

For the AHP procedure, the first criterion weight was multiplied by the first column of

the main PCM and used to define the weighted sum vector. Subsequently, the other criteria

were individually multiplied by their respective columns in the original matrix. To obtain a

final value, the derived values were added over the rows. The weighted sum vector was

divided by the criterion weights to determine the consistency index.

The consistency index was calculated by

CI ¼ ðkmax � nÞ=ðn� 1Þ ð4Þ

where kmax is the maximum consistency vector and n is the criteria number. Then, the

consistency ratio, which defines the consistency of each matrix, was calculated by

CR ¼ CI/RI ð5Þ

where CR is the ratio of the consistency index (CI) and random index (RI). As a general

rule, CR B0.1 should be preserved for the matrix to be consistent.

The consistency ratio (CR) was calculated for all models in which the AHP was applied.

If the CR is [0.1, the models were automatically neglected. This process was applied to

compute the weights of all DRASTIC parameters by modifying the initial weights of

factors for determining the vulnerability.

3.5 Single-parameter sensitivity analysis (SPSA)

The single-parameter sensitivity is introduced by Napolitano and Fabbri (1996). The SPSA

offers useful information on the effect of weighting values allocated to each parameter and

supports the analyst in judging the importance of subjectivity (Gogu et al. 2003; Babiker

et al. 2005; Huan et al. 2012; Li and Merchant 2013). The most effective parameters are

defined by comparing the theoretical weights with the SPSA. The effective weight was

computed as

W ¼ ððPr � PwÞ � VÞ � 100 ð6Þ

where W is the effective weight of each parameter and V is the overall vulnerability index.

Moreover, Pr and Pw are the rating value and weight of each parameter, respectively.
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3.6 Optimization of the DRASTIC model to groundwater contamination vulnerability

In this study, groundwater vulnerability maps were prepared using three different proce-

dures in a GIS-based approach. The original DRASTIC model weights and three other

approaches to optimize the DRASTIC model rates and weights were used, including the

FR, AHP and SPSA approaches. These methods were integrated and used to develop the

FR-DRASTIC model and two new hybrid methods, i.e., FR-AHP and FR-SPSA. The area

and percentage distribution of the vulnerable classes in the study area were determined

using the three different maps. The vulnerability maps were classified into five vulnera-

bility classes: very low, low, moderate, high and very high. To validate and compare the

derived results between groundwater vulnerability and nitrate concentration, the Pearson’s

correlation was determined.

3.6.1 Revision of the rates using frequency ratio model

Increasing the rating scale validity is important for producing accurate groundwater vul-

nerability assessment results (Baalousha 2010; Assaf and Saadah 2009). In this method, the

highest DRASTIC rate in the study area was given a higher probability, which was derived

from the FR; a relation was applied to obtain the other DRASTIC rates. By optimizing the

DRASTIC model rates based on the FR approach compared with the Wilcoxon modifi-

cation, which is one of the most effective rating scale revisions (Panagopoulos et al. 2006;

Antonakos and Lambrakis 2007), indicates that regions with no data have been assigned a

value due to the interpolation of nitrate samples. Therefore, nitrate is available in all

DRASTIC layer ranges.

Fig. 2 Ordinary Kriging interpolation using nitrate sample (May 2010)
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3.6.2 Revision of the weights

The index weights show their relative necessity. The DRASTIC model weights for the

study area may contain some ambiguity because the same index has different impacts on

groundwater vulnerability in various regions (Huan et al. 2012). In this study, the weights

are reassigned using revised weights. The revised weight for each DRASTIC parameter is

determined by applying two methods, i.e., AHP and SPSA. These methods are efficient for

revision of DRASTIC weights due to considering local hydrological setting and effective

weights of each parameter. The procedure for revising the weights using the aforemen-

tioned methods integrates the FR approach and generates new modification of vulnerability

maps.

3.7 Validation of groundwater vulnerability and analysis nitrate samples

Various validation methods exist in the literature, including analyzing the hydrographs and

chemographs, isotopic chemistry, using an artificial tracer and using analytical and

numerical models (Zwahlen 2004; Wang et al. 2012). Many other studies have imple-

mented the same validation techniques for, e.g., groundwater nitrate concentration ana-

lysis, groundwater quality analysis, groundwater flow models, statistical methods and

sensitivity analysis (Babiker et al. 2005; Panagopoulos et al. 2006; Nobre et al. 2007;

Neshat et al. 2013; Boughriba et al. 2010; Chitsazan and Akhtari 2009; Saidi et al. 2010;

Saidi et al. 2011; Wang et al. 2012; Huan et al. 2012). In this study, the method efficiency

was validated using nitrate concentration distributions. The nitrate concentration in the

study area was selected as the primary contamination parameter. Nitrate concentrations

were sampled at 27 agricultural wells. The samples were collected in May from 2 years

(2010 and 2012). Although groundwater vulnerability is relative and not absolute, ana-

lyzing nitrate concentrations or nitrate samples from the same month in each year reduces

error in the Pearson’s correlation factor. Here, two samples from the first and last study

years were used because they better address the purpose of this investigation. The samples

from 2010 and 2012 were analyzed and used to obtain correlations, respectively. Then, the

samples derived from 2012 normalized which is more reliable and closer to the fact of

study area are selected for correlation.

4 Results and discussion

4.1 Intrinsic vulnerability map

In this study, the original groundwater vulnerability map was determined and nitrate

samples were compared. The intrinsic vulnerability map of the Kerman Plain (Fig. 3) was

produced by integrating the seven layers of the DRASTIC method according to the weights

and rates compiled by Aller et al. (1987). The vulnerability index was divided into five

classes ranging from very low to very high. The southeastern and northern parts of the

plain exhibit the highest vulnerability, demonstrating that these regions are most suscep-

tible to contamination. In the central area, the vulnerability decreases from east to west.

The DRASTIC-derived results indicate that 50.09 % of the total study area is in the very

high and high classes. Moreover, 30.81 % of the area is moderately vulnerable; less than

20 % of the study area is allocated to the low and very low contaminant vulnerability

classes. The data analysis for 2011 indicates that the Pearson’s correlation factor derived
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from the DRASTIC model is R = 0.44 (Neshat et al. 2013). The correlation decreases to

R = 0.37 by using the nitrate samples from 2012. This reduction in correlation is due to

increased fertilizer usage for agricultural activity in the Kerman plain, representing the

importance of agricultural productivity in the area, which deteriorates the groundwater

quality. The study area is located in an arid and semiarid region; clearly, groundwater is the

only water source for agricultural activity and drinking water.

4.2 Application of newly developed methods

The new vulnerability index was calculated according to Eq. (7) (below), and the rates

were modified using the FR approach and original DRASTIC model weights:

FR-DRASTIC ¼ D modfrð ÞDW þ R modfrð ÞRW þ A modfrð ÞAW þ S modfrð ÞSW

þT modfrð ÞTW þ I modfrð ÞIW þ C modfrð ÞCW

ð7Þ

where mod fr expresses the modified rates obtained from the FR method multiplied by the

original DRASTIC weights.

Table 2 indicates the original and modified rating values for each DRASTIC layer class.

Modified rating values were derived by interpolating the 27 nitrate concentration samples

(Fig. 4). In order to optimizing the rates of DRASTIC parameter’s range based on FR, the

highest rate of DRASTIC of each factor’s range in the study area was given to the highest

FR value and the other rates of DRASTIC factor’s ranges were calculated through pro-

portion. In the case of water table factor, the DRASTIC rates range from 1 to 3. As the

highest rate of DRASTIC is 3, the highest FR value obtained 3 as well, while the modified

rates of study area based on FR value in each class of net recharge indicates that the highest

rate assigned to the lowest original DRASTIC rate which obtained 6 and the rest of

weighting rates were modified linearly. Also the lowest rate belongs to the highest

DRASTIC rate which changed to 3.7. For the aquifer media, the rates of each class were

based on the study area permeability varies from 2 to 8. According to the original

DRASTIC rates, in the study area, gravel–sand has the highest rate but in the modified rate

marlstone due to the higher FR value derived highest rate which is 8. The minimum

modified rate of DRASTIC obtained 1.2 which calculated proportionally and changed

linearly.

The study area was split into seven discrete groups of soil media including clay loam,

gravel, silty loam, loam, sandy loam, sand and none shrinking. The maximum of original

and modified rate was allocated to gravel and sand due to their permeability. Also the rates

of the other classes calculated accordingly based on FR value in each class. For topography

parameter, five slope groups were determined based on Aller et al. (1987). The lower rates

of original DRASTIC were assigned to the higher slopes continuously, but in the Kerman

plain the rates have been changed according to the FR value in the area. The modified rate

of DRASTIC for slope ranges from 12� to 18� has the highest rate due to the highest FR

value and the lowest rate of FR value belongs to ranges between 0 and 2 degree in the

study area with value of 4.1. The vadose zone plays a significant role in percolation of

rainfall and surface water flow. Silt and clay, sand and gravel, and gravel and sand with silt

and clay are the main classes of vadose zone parameter. As illustrated in Fig. 4, the

modified rates of DRASTIC in the study area vary from 1.9 to 8. Based on the FR value

and relation between the factor’s ranges, the lowest and highest rates were assigned to silt/

clay and marlstone shale, respectively. In the case of conductivity in the study area, the

original DRASTIC rates range from 1 to 4, but in the modified rates of DRASTIC, the
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lowest rate is 1.3 which was assigned to 4–12 class and the highest modified rate allocated

to the lowest original DRASTIC rate.

In the new hybrid FR-DRASTIC method, the very high and high indexes correspond to

high potential vulnerability areas. Figure 5 indicates that the areas with the highest vul-

nerability are located in a small northern region and the southeast and southwest Kerman

plain. The western and northeastern areas have lower contamination vulnerabilities;

moderate vulnerability ranges were assigned to nearly half the area. Figure 8 illustrates

that 36.15 % of the Kerman plain exhibits lower vulnerability. Moreover, 15.44 % of the

study area exhibits high vulnerability.

In the second hybrid method, the weighting scores were optimized using SPSA. Table 3

shows the effective weights obtained from the SPSA. The lowest and highest effective

weights from the depth to water and vadose zone impact were compared to the theoretical

weights, respectively. Compared with the theoretical weights assigned by the DRASTIC

model, the net recharge, aquifer media, soil media and slope had higher effective weights.

FR-SPSA ¼ D modfrð Þ � 1:3þ R modfrð Þ � 4:7þ A modfrð Þ � 3:5þ S modfrð Þ � 3

þT modfrð Þ � 1:9þ I modfrð Þ � 6:9þ C modfrð Þ � 1:7
ð8Þ

As shown in Eq. (8), the modified rates are multiplied by weights derived from SPSA.

The vulnerability area (Fig. 6) and its percentage illustrate that parts of the north, south-

west and southeast have the higher vulnerability compared with the west and northwest,

which exhibit lower vulnerability. Figure 8 shows that 29.43 % of the total area is located

in very high and high vulnerable areas. Moreover, 34.78 % of the area is in moderate and

35.82 % in low and very low classes.

Fig. 3 Intrinsic vulnerability map and nitrate sample (May 2012)
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In the last hybrid method, the effective weights of each DRASTIC parameter are

compared with other parameters used in the AHP method. The pairwise comparison matrix

was used for weighting the seven DRASTIC parameters, which was calculated by

Fig. 4 Seven layers of modified DRASTIC rates using FR approach
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multiplying the new rating coefficients. In this study, the best alternative weights derived

from the AHP approach correspond to CR = 0.075. Table 4 shows the AHP-derived

weights.

The DRASTIC layers including the statistically revised rates from both the FR and AHP

weighting approaches were integrated to generate the FR-AHP model. The FR-AHP is

calculated as

Fig. 5 FR-DRASTIC

Table 3 Statistics of single-parameter sensitivity analysis (SPSA)

Parameters Theoretical weight
(%)

DRASTIC
weight

Modified
weight

Effective weight (%)

Min Max Mean SD

Depth to water 21.74 5 1.3 4.13 16.3 6.56 2.66

Net recharge 17.39 4 4.7 3.36 42.1 20.43 10.6

Aquifer media 13.04 3 3.5 3.29 28.23 15.21 5.64

Soil media 8.7 2 3 4.39 25.97 12.53 4.57

Topography 4.35 1 1.9 3.47 16.94 8.14 2.64

Vadose zone
impact

21.74 5 6.9 12.04 46.51 29.81 7.66

Hydraulic
conductivity

13.04 3 1.7 2.5 17.91 7.3 3.67
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FR-AHP ¼ D modfrð Þ � 0:04þ R modfrð Þ � 0:44þ A modfrð Þ � 0:08þ S modfrð Þ � 0:21

þT modfrð Þ � 0:02þ I modfrð Þ � 0:14þ C modfrð Þ � 0:07
ð9Þ

According to the obtained FR-AHP vulnerability map (Fig. 7), the south and southeast

exhibit very high and high potential contamination vulnerability. Moreover, from west to

east in the central region and part of the northeast exhibit low and very low contamination

vulnerability.

Figure 8 indicates that in the hybrid methods, the moderate and low vulnerability areas

occupy the most area, i.e., 55.32, 57.02 and 65.08 %. The percentage of vulnerable areas in

the original DRASTIC map compared with the newly predicted values is higher; nearly

half the Kerman plain contains high and very high potential contamination vulnerability.

This finding indicates that the enlarged groundwater contamination illustrated by the high

and very high vulnerable areas using the DRASTIC model in comparison with the modified

models has been optimized in the new methods. Although it can be inferred that the

Kerman plain groundwater contamination vulnerability is moderately distributed, the area,

Fig. 6 FR-SPSA

Table 4 AHP-derived weights

Criteria Depth to
water

Net
recharge

Aquifer
media

Soil
media

Topography Vadose zone
impact

Hydraulic
conductivity

AHP
weight

0.04 0.44 0.08 0.21 0.02 0.14 0.07
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specifically regarding hydrogeological settings and the extensive agricultural activity, is

more susceptible to contamination over time.

4.3 Validation and selection of a suitable method in the study area

The correlation value shows the suitability and reliability of the models applied in the

study area. The resultant vulnerability maps were validated using Pearson’s correlation

factor to select the best vulnerability maps regarding the study area conditions. The FR

Fig. 7 FR-AHP

Fig. 8 Comparison of derived vulnerability maps
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approach integrated with other methods played an important role in increasing the cor-

relation between groundwater vulnerability and nitrate concentrations in 2012. The original

DRASTIC vulnerability correlation was 0.37. After optimization, the correlation changed,

increasing to 0.75 in the FR-DRASTIC model. Correlations of 0.77 and 0.80 were obtained

for the FR-SPSA and FR-AHP approaches (see Table 5). These values suggest that the

vulnerability map derived from the FR-AHP method is more accurate. The correlation

values for the new hybrid methods are relatively similar. The high vulnerability in the

southeastern Kerman plain is common among all methods; this area primarily contains

highly permeable gravel and sand.

5 Conclusion

Evaluating the potential groundwater contamination is important because groundwater is

typically the only water source in arid and semiarid areas. The extensive use of fertilizers

for agricultural activities in the study area increases the amount of pollution. The

DRASTIC model can be criticized because the chosen features and adopted ratings and

weights do not always conform to the study area specifications. Therefore, many studies

have developed modified DRASTIC models. Because the DRASTIC model can be eval-

uated using hydrogeological parameters, this study attempted to use the same volume of

data and nitrate concentration to develop a modified DRASTIC model.

The FR approach is used to optimize the rates of DRASTIC parameters in this study.

Therefore, new hybrid methods are introduced by first modifying the DRASTIC model

rating scale using the FR approach and then integrating with other weighting methods.

Because the AHP and SPSA methods are efficient for optimization, they have been applied

for parameter weighting. Optimizing the DRASTIC model weights with the AHP and

SPSA approaches indicates that the net recharge, soil and vadose zone impact are effective

parameters in the Kerman plain.

According to this evaluation, by integrating the original DRASTIC weights with the

modified rates, the correlation of the original DRASTIC results sharply doubled with the

FR-DRASTIC model. However, this correlation in the FR-SPSA increases gradually. The

FR-AHP approach has the higher correlation compared with the other methods with an

80 % correlation.

The groundwater vulnerability mapping for nitrate can be employed for perceptible

groundwater resource management. Repeated and accurate monitoring of groundwater

quality in relatively high vulnerable areas should be implemented to control changing

contaminant levels. The proposed methodologies suggest an effective approach to preserve

groundwater resources. This research may also be applied to boost awareness of envi-

ronmental issues.

Table 5 Correlation factor
comparison

Vulnerability maps Pearson’s correlation
coefficient

DARSTIC 0.37

FR-DRASTIC 0.75

FR-SPSA 0.77

FR-AHP 0.80
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