EFFECTS OF CRUDE PALM OIL ON THE PHYSICO-CHEMICAL PROPERTIES OF POLYETHYLENE BLOWN FILM

By

MIN MIN AUNG

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirement for the Degree of Master of Science

April 2006
Dedication

With gratitude for their love, support, and guidance,

I dedicate this thesis to my parents,

U Nay Myo Aung and Daw Ah Mar Sein
The influence of small amounts of crude palm oil (CPO) content on the physical and chemical properties of high density polyethylene (HDPE) and linear low-density polyethylene (LLDPE) have been investigated. HDPE and LLDPE containing, 2, 3 and 5% CPO were prepared in a twin-screw extruder. Then, films of 0.2mm thickness were produced by using blown film technique. The melting point of CPO is 35.65°C and melting point of PE is 130-140°C in HDPE and 85-125°C in LLDPE. Thermal observation by Differential Scanning Calorimetry (DSC) is not significant in melting and crystallisation. Similar observation was also presented in storage modulus, tan δ and loss modulus of Dynamic Mechanical Analysis (DMA) results.

The improvement of tensile strength and elongation at break showed that the enhancement in toughness of the polymers in the addition of CPO. A gradual increase in impact strength of HDPE with the CPO content further supported above
notation. The enhancement in the physical properties in the presence of CPO is believed to be attributed to the increased chain mobility of the polymer along with improved orientation strengthening in HDPE and LLDPE. Evidence from Scanning Electron Micrographs (SEM) were also used to support this contention. However, the decline in impact strength of LLDPE with the addition of CPO is associated with the formation of defects in amorphous phase of LLDPE.

With increasing of CPO addition, viscosity is increased at the low shear rate in rheological examination. Melt Flow Index (MFI) value is increased with the incremental of CPO addition. FT-IR analysis shows that almost same spectra of modified PE with control. The results indicate that no chemical reaction occurred between PE and CPO.
Kajian mengenai pengaruh kandungan minyak sawit mentah (CPO) dalam kuantiti yang kecil terhadap keadaan fizikal dan ciri-ciri kimia politeline ketumpatan tinggi (HDPE) dan politeline ketumpatan rendah (LLDPE) telah dijalankan. HDPE dan LLDPE yang mengandungi 2, 3 dan 5 % CPO disediakan di dalam ‘twin-screw extruder’. Kemudian, filem-filem dengan ketebalan 0.2mm dihasilkan dengan melalui teknik pencairan filem. Takat lebur bagi CPO ialah 35.65°C manakala, bagi PE pula ialah 130-140°C di dalam HDPE dan 85-125°C di dalam LLDPE. Pemerhatian dari segi haba pula tidak signifikan untuk peleburan dan pengkristalan. Pemerhatian yang sama turut ditunjukkan dalam modulus simpanan, tan δ dan modulus pengurangan dalam keputusan analisis mekanikal dinamik (DMA). Peningkatan dalam kekuatan regangan dan pemanjangan pada titik penamat dengan penyelarasan penurunan telah meningkatkan tahap
kekerasan polimer melalui penambahan CPO. Manakala, penurunan secara berperingkat dalam kesan kekuatan HDPE yang mengandungi CPO telah menyokong ‘above notation’. Peningkatan ciri-ciri fizikal dengan kehadiran CPO dipercayai menyumbang kepada peningkatan pergerakan rantaian polimer selaras dengan perkembangan orientasi kekuatan HDPE dan LLDPE. Bukti-bukti daripada pengimbas Mikrograf Elektron juga turut digunakan untuk menyokong pendapat ini. Walau bagaimanapun, penurunan dalam kesan kekuatan LLDPE yang mengandungi CPO adalah sama dengan pembentukan kerosakan dalam fasa amorphous LLDPE.

Indeks Aliran Lebur (MFI) berkurangan dengan peningkatan kandungan CPO. Kelikatan yang berkurangan dengan kadar sekata pula menunjukkan tahap kelinciran CPO. Ini membuktikan bahawa kemampuan pemprosesan PE adalah meningkat dengan penambahan CPO. Sifat-sifat rheologikal juga sepadan dengan perubahan morfologi terhadap politeline yang telah dimodifikasi. Aliran ciri-ciri CPO/ PE pula tidak menunjukkan perubahan sebagaimana yang dijangka dengan mengambil kira CPO sebagai agen penyesuaian. Begitu juga keputusan analisis daripada Fourier Transform Infrared (FTIR) yang menunjukkan secara relatifnya interaksi intermolekular yang kuat antara CPO dan PE adalah wujud dalam filem PE termodifikasi.
ACKNOWLEDGEMENTS

I would like to express my sincere and deep gratitude to my Supervisor Dr. Chuah Teong Guan (UPM) and Dr. Chantara Thevy Ratnam (MINT) who provided considerable invaluable insights and comments to help me enhance the quality to my work. Without their patient support, enlightening guidance, it is impossible for me to complete this long journey. Thanks for all their efforts and precious time for my research.

I would like also thanks to members of the supervisory committees, Dr. Suraya Abdul Rashid (UPM) and Mr. Wan Hasamudin Wan Hassan (MPOB), for their helpful advice and guidance during the course of research and I wish to thank

I would like to thanks to lab supervisor and staff of MINT and PRSS, especially Ms. Normawati Samsudin, Mr. Zulkifli b Ahamid from PRSS and Mr. Wan Ali Wan Yusof, Mr. Zahid Abdullah from MINT.

Finally, I dedicate this thesis to my beloved family, in particular, my parents, without their love, support and encouragement, it would not be possible for me.
I certify that an Examination Committee has met on 13 April 2006 to conduct the final examination of Min Min Aung on her Master of Science entitled “Effect of Crude Palm Oil on the physio-chemical properties of polyethylene blown film” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Russly Abdul Rahman, PhD
Professor
Faculty of Food and Science
University Putra Malaysia
(Chairman)

Robiah Yunus, PhD
Associate Professor
Faculty of Engineering
University Putra Malaysia
(Internal Examiner)

Siti Asslina Hassan, PhD
Lecturer
Faculty of Engineering
University Putra Malaysia
(Internal Examiner)

Che Husna Azhari, PhD
Professor
Faculty of Engineering
University Kebangsaan Malaysia
(External Examiner)

[Signature]

Date: 11 JUL 2006

Hasanah Md. Ghazali, PhD
Professor, Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia
This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirements for the degree of Master of Science. The members of the Supervisory Committee are as follows:

Chuah Teong Guan, PhD
Associate Professor
Faculty of Engineering
University Putra Malaysia
(Chairman)

Suraya Abdul Rashid, PhD
Lecturer
Faculty of Engineering
University Putra Malaysia
(Member)

Chantara Thervy Ratnam, PhD
Radiation Processing Technology Division
Malaysia Institute for Nuclear Technology
(Member)

Wan Hasamudin Wan Hassan, MS
Biomass Technology Centre
Engineering & Processing Division
Malaysian Palm Oil Board
(Member)

AINI IDERIS, PhD
Professor/ Dean
School of Graduate Studies
University Putra Malaysia

Date:
DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

MIN MIN AUNG

Date:
TABLE OF CONTENTS

DEDICATION
ABSTRACT ii
ABSTRAK iii
ACKNOWLEDGEMENTS v
APPROVAL vi
DECLARATION viii
LIST OF TABLES xi
LIST OF FIGURES xii
LIST OF ABBREVIATIONS xiv
LIST OF NOTATIONS xvi

CHAPTER

1 INTRODUCTION
1.1 Background of study 1
1.2 Modified polyethylene properties with fillers 3
1.3 The Objectives of the study 5

2 LITERATURE REVIEW
2.1 Introduction 7
2.2 Polyolefin films
 2.2.1 Polyolefin films 7
 2.2.2 LLDPE and HDPE films 7
2.3 Modified Polyethylene
 2.3.1 Palm Oil modified polyolefin 11
 2.3.2 Polyethylene modified Palm Oil’s 17
2.4 Review of prior researches 15
2.5 Palm oil polymers 17
2.6 Summary 19

3 METHODOLOGY
3.1 Introduction 21
3.2 Materials and samples preparation 22
 3.2.1 Formulations 23
 3.2.2 Compounding procedure 23
 3.2.3 Preparation of blown film 25
 3.2.4 Compression moulding 26
 3.2.5 Preparation of Izod impact test specimens 27
3.3 Thermal properties analysis 27
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 Characteristics of polyethylene used in this study</td>
<td>22</td>
</tr>
<tr>
<td>3.2 Properties of CPO used in this study</td>
<td>22</td>
</tr>
<tr>
<td>3.3 (a) Extrusion parameter of CPO:LLDPE at 170/180/180°C</td>
<td>24</td>
</tr>
<tr>
<td>3.3 (b) Extrusion parameter of CPO:HDPE at 170/180/180°C</td>
<td>24</td>
</tr>
<tr>
<td>3.4 (a) Blowing parameter of CPO:LLDPE at 170/180/180°C</td>
<td>25</td>
</tr>
<tr>
<td>3.4 (b) Blowing parameter of CPO:HDPE at 170/180/180°C</td>
<td>26</td>
</tr>
<tr>
<td>4.1 Effect of CPO on the melting temperature (T_m), degree of crystallinity (w_c), crystallinity temperature (T_c) and density (ρ) of HDPE</td>
<td>35</td>
</tr>
<tr>
<td>4.2 Effect of CPO on the melting temperature (T_m), degree of crystallinity (w_c), crystallinity temperature (T_c) and density (ρ) of LLDPE</td>
<td>35</td>
</tr>
<tr>
<td>4.2 Effect of CPO loading on the ratio of MD to TD</td>
<td>43</td>
</tr>
<tr>
<td>4.3 Effect of CPO on the density of HDPE and LLDPE</td>
<td>59</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>27</td>
</tr>
<tr>
<td>4.1</td>
<td>36</td>
</tr>
<tr>
<td>4.2</td>
<td>37</td>
</tr>
<tr>
<td>4.3</td>
<td>37</td>
</tr>
<tr>
<td>4.4</td>
<td>38</td>
</tr>
<tr>
<td>4.5</td>
<td>38</td>
</tr>
<tr>
<td>4.6</td>
<td>39</td>
</tr>
<tr>
<td>4.7</td>
<td>39</td>
</tr>
<tr>
<td>4.8</td>
<td>40</td>
</tr>
<tr>
<td>4.9</td>
<td>41</td>
</tr>
<tr>
<td>4.10</td>
<td>41</td>
</tr>
<tr>
<td>4.11</td>
<td>42</td>
</tr>
<tr>
<td>4.12</td>
<td>44</td>
</tr>
</tbody>
</table>

3.1 Flow Chart of compounding PE and CPO

4.1 Effect of CPO on thermal conductivity of HDPE and LLDPE.

4.2 The crystallization graph of HDPE in the presence of 0, 2, 3 and 5% of CPO

4.3 The melting graph of HDPE in the presence of 0, 2, 3 and 5% of CPO

4.4 The crystallization graph of LLDPE in the presence of 0, 2, 3 and 5% of CPO

4.5 The melting graph of LLDPE in the presence of 0, 2, 3 and 5% of CPO

4.6 Effect of CPO on the storage modulus of HDPE : (a) 0%CPO content (b) 5% CPO content

4.7 Effect of CPO on the storage modulus of LLDPE : (a) 0%CPO content (b) 5% CPO content

4.8 Effect of CPO on the tan δ of HDPE : (a) 0%CPO content (b) 5% CPO content

4.9 Effect of CPO on the tan δ of LLDPE : (a) 0%CPO content (b) 5% CPO content

4.10 Effect of CPO on the loss modulus of HDPE : (a) 0%CPO content (b) 5% CPO content

4.11 The loss modulus of LLDPE:CPO composite. : (a) 0%CPO content (b) 5% CPO content

4.12 Effect of CPO on the Ts of LLDPE
4.13 Effect of CPO on the Ts of HDPE 44
4.14 Effect of CPO on the Eb of LLDPE 46
4.15 Effect of CPO on the Eb of HDPE 46
4.16 Effect of CPO on the Modulus of LLDPE 47
4.17 Effect of CPO on the Modulus of HDPE 47
4.18 Effect of CPO on the dart drop impact strength of HDPE and LLDPE 49
4.19 Effect of CPO on the Izod impact strength of HDPE and LLDPE 50
4.20 SEM micrograph of HDPE and LLDPE film fracture part at 100% elongation (Magnification 10,000x) 52
4.21 SEM micrograph of HDPE and LLDPE film surface in the presence 2%CPO : samples were stretched 500% in MD (Magnification 10,000x) 53
4.22 SEM micrograph of HDPE and LLDPE film surface in the presence 3%CPO : samples were stretched 500% in MD (Magnification 10,000x) 54
4.23 SEM micrograph of HDPE and LLDPE film surface in the presence 5%CPO : samples were stretched 500% in MD (Magnification 10,000x) 55
4.24 Effect of CPO on the MFI of LLDPE and HDPE. 56
4.25 Dependence of viscosity on shear rate for HDPE 57
4.26 Dependence of viscosity on shear stress for HDPE 57
4.27 Dependence of shear stress on shear rate for HDPE 57
4.28 Dependence of viscosity on shear rate for LLDPE 58
4.29 Dependence of viscosity on shear stress for LLDPE 58
4.30 Dependence of shear stress on shear rate for LLDPE 59
4.5.2.1 IR spectra of PE:CPO (a)0%CPO:LLDPE (b)5%CPO:LLDPE

4.5.2.2 IR spectra of PE:CPO (a)0%CPO:HDPE (b)5%CPO:HDPE
LIST OF ABBREVIATIONS/ NOTATIONS

CPO Crude palm oil
PE Polyethylene
LDPE Low density polyethylene
LLDPE Linear low density polyethylene
HDPE High density polyethylene
DMA Dynamic mechanical analysis
DSC Differential scanning calorimetry
MD Machine direction
TD Transverse direction
SEM Scanning electron microscopy
Ts Tensile strength
Eb Elongation at break
MFI Melt Flow Index
SCB Short chain branching
UTM Instron Universal Testing Machine
ECSR Environmental Stress-Crack Resistance
MWD Molecular weight distribution
HMW High molecular weight
LCB Long chain branch
EPOP Epoxidized palm oil and palm oil products
ESBO Epoxidized soyabean oil
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>PVC</td>
<td>Polyvinyl chloride</td>
</tr>
<tr>
<td>PP</td>
<td>Polypropylene</td>
</tr>
<tr>
<td>OTR</td>
<td>Oxygen transmission rate</td>
</tr>
<tr>
<td>WVTR</td>
<td>Water vapour transmission rate</td>
</tr>
<tr>
<td>PS</td>
<td>Polystyrene</td>
</tr>
<tr>
<td>MPE</td>
<td>Maleated polyethylene</td>
</tr>
<tr>
<td>ASTM</td>
<td>American society of testing and materials</td>
</tr>
<tr>
<td>DOBI</td>
<td>Deterioration of bleachability index</td>
</tr>
<tr>
<td>VLDPE</td>
<td>Very low density polyethylene</td>
</tr>
<tr>
<td>EVA</td>
<td>Ethylene vinyl acetate</td>
</tr>
<tr>
<td>FFB</td>
<td>Fresh fruit bunches</td>
</tr>
<tr>
<td>DOBI</td>
<td>Deterioration of bleach ability index</td>
</tr>
<tr>
<td>LVDT</td>
<td>High sensitivity displacement detector</td>
</tr>
<tr>
<td>DBS</td>
<td>Distance between the supports</td>
</tr>
<tr>
<td>FTIR</td>
<td>Fourier transform infrared spectra</td>
</tr>
<tr>
<td>WS</td>
<td>Water sorption</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>T_c</td>
<td>Crystallisation temperature</td>
</tr>
<tr>
<td>T_m</td>
<td>Melting point</td>
</tr>
<tr>
<td>ω_c</td>
<td>Thermal conductivity</td>
</tr>
<tr>
<td>ρ_a</td>
<td>Density of amorphous phase</td>
</tr>
<tr>
<td>ρ_c</td>
<td>Density of crystalline phase</td>
</tr>
<tr>
<td>ρ</td>
<td>Density of polymer</td>
</tr>
<tr>
<td>E'</td>
<td>Storage modulus</td>
</tr>
<tr>
<td>E''</td>
<td>Loss modulus</td>
</tr>
<tr>
<td>T_g</td>
<td>Glass transition temperature</td>
</tr>
<tr>
<td>M50</td>
<td>The dart drop impact weight</td>
</tr>
<tr>
<td>Mo</td>
<td>The lowest missile weight</td>
</tr>
<tr>
<td>Dw</td>
<td>Uniform weight decrement/ increment</td>
</tr>
<tr>
<td>A/N</td>
<td>Sum of number of failure occurred at a specified mass multiply by the number of mass increment and sum of failed specimen respectively</td>
</tr>
</tbody>
</table>