DEVELOPMENT OF A FUZZY INTEGRAL GROUP MODEL BASED ON LINGUISTIC REASONING FOR PROJECT MANAGER SELECTION

ALI REZA AFSHARI

FK 2012 30
DEVELOPMENT OF A FUZZY INTEGRAL GROUP MODEL BASED ON LINGUISTIC REASONING FOR PROJECT MANAGER SELECTION

By

ALI REZA AFSHARI

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirements for the Degree of Doctor of Philosophy

September 2012
Abstract of thesis to be presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirements for the degree of Doctor of Philosophy

ABSTRACT

DEVELOPMENT OF A FUZZY INTEGRAL GROUP MODEL BASED ON LINGUISTIC REASONING FOR PROJECT MANAGER SELECTION

By

ALI REZA AFSHARI

June 2012

Chairman: Professor Rosnah bt. Mohd. Yusuff, PhD
Faculty: Engineering

An important phase of human resource management is project manager selection, which is concerned with identifying an individual from a pool of candidates suitable for a vacant position. As in many decision problems, project manager selection problem is very complex in real life. Some of the techniques in decision making are multi criteria decision making (MCDM) can be used for project manager selection process. Although many studies have investigated this problem, there are three missing links in existing studies: Firstly, based on literature review, there is no systematic and valid method for specifying the jobs requirements criteria have been presented. Secondly, group decision making (GDM) is a very important factor for solving the problem comprehensively. However, it has not been considered in the majority of the reviewed studies. Thirdly, possible dependencies between the criteria in the project manager selection model have not been considered in the existing studies.
The main objective of this research is to develop an analytical hybrid methodology for project manager selection problem in order to identify criteria for project manager selection by an extension of Delphi method, to evaluate a candidate by a new group multi criteria decision making (GMCDM) model based on fuzzy set theory, and develop a model based on linguistic extension of fuzzy measures and fuzzy integrals for ranking candidates. The methodology of this research includes four stages. The objective of the first stage is to eliciting criteria hierarchy for project manager selection. In this stage, after reviewing pertinent literature, the Delphi based method was used to seek the criteria from managers and experts. The objective of the second stage is project manager evaluation based on new group fuzzy linguistic modeling for determining criteria importance and candidate ratings. The objective of the third stage is fuzzy aggregating and the objective of fourth stage is ranking the candidates based on new linguistic fuzzy measure and fuzzy integral model.

The models were validated using three case studies of project manager selection in three project based companies for a project manager position. The effectiveness of the three new methods was demonstrated in these three case studies. The results showed that the proposed models are appropriate for selecting project manager considering dependency between criteria. Firstly, this study developed a structured method for criteria selection. The use of a structured criteria selection method encourages experts to focus on explicit and functional criteria, rather than to use inappropriate criteria. As a contribution to the knowledge, this study extended the classical Delphi technique through using the results of relevant literature review and discussion with experts to identify the selection criteria. Secondly, this study
developed a linguistic extension for evaluation. Decision makers cannot express judgment in accurate numerical terms and use of linguistic labels makes decision judgment more reliable and informative for decision making. Thirdly, this study developed non additive method for aggregating stage in project manager selection. In the real world, in dealing with the multiple criteria decision making problems, the criteria are not independent. So they cannot be evaluated by conventional additive measures and there must be better methods to distinguish the preferences by applying a new nonlinear and non additive model, in which it is not necessary to assume independence.
Abstrak tesis dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

PEMBANGUNAN MODEL KUMPULAN KAMIRAN SAMAR BERDASARKAN PERTIMBANGAN LINGUISTIK UNTUK PEMILIHAN PENGURUS PROJEK

Oleh

ALI REZA AFSHARI

Jun 2012

Pengerusi: Rosnah bt. Mohd. Yusuff, PhD

Fakulti: Kejuruteraan

fasa penting dalam pengurusan sumber manusia adalah pemilihan pengurus projek, yang melibatkan mengenal pasti individu daripada kumpulan calon yang sesuai untuk pengisian jawatan kosong. Seperti dalam banyak masalah keputusan, pemilihan pengurus projek adalah masalah yang sangat kompleks dalam kehidupan sebenar. Beberapa teknik dalam membuat keputusan adalah keputusan pelbagai kriteria membuat boleh digunakan untuk proses pemilihan pengurus projek. Walaupun banyak kajian telah dijalankan untuk masalah ini, terdapat tiga hubungan yang hilang dalam kajian yang sedia ada: Pertama, tidak ada kaedah yang sistematik dan sah untuk menentukan kriteria keperluan pekerjaan yang telah dibentangkan. Kedua, kumpulan membuat keputusan merupakan faktor yang sangat penting untuk menyelesaikan masalah secara menyeluruh. Walau bagaimanapun, ia tidak dipertimbangkan dalam majoriti kajian semula. Ketiga, mungkin kebergantungan antara kriteria dalam pemilihan model pengurus projek tidak dipertimbangkan dalam kajian yang sedia ada.

pemilihan. Kedua, pembuat keputusan tidak dapat meluahkan penghakiman dari segi ketepatan berangka dan penggunaan label linguistik membuat keputusan penghakiman lebih dipercayai dan bermaklumat untuk membuat keputusan. Ketiga, dalam dunia sebenar, dalam berurusan dengan pelbagai kriteria keputusan membuat masalah, kriteria tidak terbatas. Jadi mereka tidak boleh dinilai dengan langkah-langkah tambahan konvensional dan harus mempunyai kaedah harus mempunyai untuk membezakan keutamaan dengan menggunakan bahan tambahan baru linear dan bukan model, di mana ia tidak perlu semestinya dianggap kebebasan.
ACKNOWLEDGEMENTS

I would like to express my deepest gratitude and respect to my research supervisor and the chairman of my supervisory committee, Professor Dr. Rosnah Mohd Yusuff, for all his guidance, help and encouragement throughout my research studies. I am also thankful to the members of the supervisory committee Associate Professor Dr. Tang Sai Hong and Professor Dr. Yusuff Ismail for their support in this research work and entire preparation of this doctoral dissertation. Without their guide in these five years, I could not accomplish the thesis.

I am also deeply grateful to my wife, Vahideh, my son, Morteza, and my family for their tremendous support to my study and life.

Finally, for those people who are not listed above but have given me a hand or advice, I would also like to say a word of thanks for their support.
I certify that a Thesis Examination Committee has met on 11 June 2012 to conduct the final examination of Ali Reza Afshari on his thesis entitled “Development of a Fuzzy Integral group model based on Linguistic reasoning for project manager selection” in accordance with the Universities and University Colleges 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Examination Committee are as follows:

Datin Dr Napsiah Ismail, PhD
Professor
Faculty of Engineering
University Putra Malaysia
(Chairman)

Dr Norzima Zulkifli, PhD
Faculty of Engineering
University Putra Malaysia
(Internal Examiner)

Dr Mohd Khairol Anuar Mohd Ariffin, PhD
Associate Professor
Faculty of Engineering
University Putra Malaysia
(Internal Examiner)

Dr Abid Haleem, PhD
Professor
Faculty of Engineering and Technology
University Jamia Millia Islamia
India
(External Examiner)

SEOW HENG FONG, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Rosnah bt. Mohd. Yusuff, PhD
Professor
Faculty of Engineering
University Putra Malaysia
(Chairman)

Tang Sai Hong, PhD
Associate Professor
Faculty of Engineering
University Putra Malaysia
(Member)

Md. Yusof Ismail, PhD
Professor
Faculty of Manufacturing Engineering
University Malaysia Pahang
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

I declare that the thesis is original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institutions.

ALI REZA AFSHARI

Date:
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>II</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>VIII</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>ERROR! BOOKMARK NOT DEFINED.</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>XI</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>XV</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>XVII</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>XVIII</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>XIX</td>
</tr>
</tbody>
</table>

CHAPTER

1. INTRODUCTION
1.1 Background of the study 1
1.2 Problem statement 5
1.3 Research objectives 7
1.4 Scope of research 7
1.5 Research contribution 8
1.6 Organization of the thesis 9
1.7 Summary 11

2. LITERATURE REVIEW
2.1 Introduction 12
2.2 Decision making theory 12
2.2.1 Multiple criteria decision making problem 14
2.2.1.1 Characteristics of criteria 15
2.2.1.2 Components of the MCDM model 15
2.2.2 Two brand categories of MCDM problems 17
2.2.2.1 Multiple objective decision making (MODM) 18
2.2.2.2 Multiple attribute decision making (MADM) 20
2.2.3 Group decision making 21
2.2.3.1 The Delphi technique 21
2.2.3.2 Nominal group technique 22
2.3 Fuzzy decision making 24
2.3.1 Fuzzy set theory 24
2.3.2 Membership function 27
2.3.3 Linguistic variables 28
2.3.4 Triangular fuzzy number 30
2.4 Dependency between criteria in MCDM 35
2.4.1 Analytical network process (ANP) 36
2.4.2 Fuzzy synthetic utilities for ranking 36
2.4.2.1 Fuzzy measure 36
2.4.2.2 Fuzzy integral 38
2.5 Recent review of project manager selection problem 40
2.5.1 Project manager selection as a decision making process

2.5.2 Classic MCDM approaches
2.5.2.1 AHP
2.5.2.2 ANP
2.5.2.3 TOPSIS
2.5.2.4 Expert systems
2.5.2.5 Grey relational method
2.5.2.6 Ordered weighted averaging (OWA)
2.5.2.7 Integrated approaches

2.5.3 Fuzzy environment decision making
2.5.3.1 Fuzzy linguistic modeling
2.5.3.2 Fuzzy expert systems
2.5.3.3 Fuzzy TOPSIS
2.5.3.4 Fuzzy multiple objective programming
2.5.3.5 Fuzzy AHP
2.5.3.6 Fuzzy ANP
2.5.3.7 Fuzzy OWA
2.5.3.8 Other fuzzy integrated methods

2.5.4 Observations and recommendations
2.5.4.1 Application areas
2.5.4.2 Most common method applied
2.5.4.3 Personnel selection criteria
2.5.4.4 Limitations of approaches

2.6 Summary

3. METHODOLOGY
3.1 Introduction
3.2 Justification for the research methodology
3.3 Developing systematic model for elicit selection criteria
3.4 Developing new fuzzy linguistic evaluation model
3.5 Developing a novel fuzzy synthetic utilities for ranking
3.6 Verification
3.7 Summary

4. RESULTS AND DISCUSSION
4.1 Introduction
4.2 The model development
4.2.1 Developing systematic model for elicit selection criteria
4.2.2 Developing linguistic extension of fuzzy integral
4.3 The validation by case study
4.4 Project manager selection in MAPNA
4.4.1 Results and discussion for the elicit selection criteria
4.4.1.1 Designate the group of experts
4.4.1.2 Results of investigate previous studies
4.4.1.3 Results of the generate ideas
4.4.1.4 Results of the feedback to experts
4.4.1.5 Results of the final criteria and developing hierarchy
4.4.1.6 Discussion on the using systematic criteria selection method 106
4.4.2 Results and discussion for the linguistic evaluation 108
4.4.2.1 Formation of the decision making group 108
4.4.2.2 Results of the determining criteria importance 109
4.4.2.3 Results of the evaluating candidates 110
4.4.2.4 Discussion on group linguistic evaluation 114
4.4.3 Result and discussion for the fuzzy aggregation 115
4.4.3.1 Transfer linguistic variables to triangular fuzzy numbers 116
4.4.3.2 Results of combining the fuzzy evaluation values of decision makers 120
4.4.4 Results and discussion of the fuzzy synthetic utilities 123
 4.4.4.1 Results of fuzzy measure and fuzzy integral 123
 4.4.4.2 Algorithm for identifying λ 124
 4.4.4.3 Discussion on criteria dependency overcoming 129
4.5 Project manager selection in SSP 131
 4.5.1 Using Delphi for the elicit selection criteria 132
 4.5.2 Identification of evaluation criteria weights 134
 4.5.3 Candidate rating by fuzzy group decision making 135
 4.5.4 Project manager selection by fuzzy aggregation 136
4.6 Project manager selection in Eberhard Shargh 138
 4.6.1 Identification of evaluation criteria weights 139
 4.6.2 Candidate rating by fuzzy group decision making 140
 4.6.3 Project manager selection by fuzzy aggregation 141
4.7 Feedback from the case studies 142
4.8 Comparison of additive and non additive methods 143
 4.8.1 Numerical example description 144
 4.8.2 Solving numerical example by proposed method 147
 4.8.3 Solving numerical example by fuzzy SAW 150
 4.8.4 Comparative results and discussion 151
4.9 Summary 154

5. CONCLUSIONS AND RECOMMENDATIONS 157
 5.1 Introduction 157
 5.2 Conclusions for research objectives 158
 5.3 Recommendations for future research 160

REFERENCES 162
APPENDICES 170
BIODATA OF STUDENT 186