BLOCK BACKWARD DIFFERENTIATION FORMULA FOR SOLVING ORDINARY AND ALGEBRAIC DIFFERENTIAL EQUATIONS

By

NAGHMEH ABASI

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

January 2014
COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs, and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright© Universiti Putra Malaysia
DEDICATIONS

To

My lovely parents

and

My adorable sisters, Neda and Nikoo

and

My beloved brother, Mohammad Hasan
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in
fulfilment of the requirement for the degree of Doctor of Philosophy

BLOCK BACKWARD DIFFERENTIATION FORMULA FOR
SOLVING ORDINARY AND ALGEBRAIC
DIFFERENTIAL EQUATIONS

By

NAGHMEH ABASI

January 2014

Chair: Dato’ Mohamed Bin Suleiman, PhD
Faculty: Institute for Mathematical Research (INSPEM)

This research focuses on solving semi-explicit index-1 Differential Algebraic Equations (DAEs) which is a special case of Differential Algebraic Equations (DAEs). Block Backward Differentiation Formula (BDF) methods of constant and variable step sizes are considered to produce more than one solutions per step for the DAEs concurrently. A formula of the 2-point with off-step points using block BDF method of constant step size for solving stiff ODEs is developed. The stability analysis shows that the method is A-stable. The method has competitive results in comparison with the existing block BDF method in terms of accuracy and time. The 2-point, 3-point and 2-point with off-step points block backward differentiation formulae of constant step size are extended for solving semi-explicit index-1 Differential Algebraic Equations (DAEs). Newton’s iteration is used for the implementation of the methods. It is seen that the block BDF methods applied are more suitable than the existing BDF method in terms of accuracy and the time is competitive. In addition, a 3-point block backward differentiation formula using variable step size for solving stiff Ordinary Differential Equations (ODEs) is formulated. The strategy applied for selecting the step size and the stability regions are described. The accuracy of the developed method is seen to be better than the existing variable step block BDF. Solving semi-explicit index-1 DAEs using 2-point and 3-point block backward differentiation formula of variable step size are also considered. The strategies involved in the choosing and controlling the step size of both methods are described. The codes developed indicate that the methods have outperformed the existing method in reducing the error while the time is competitive. The numerical results indicate that the block BDF methods of constant and variable step size for solving semi-explicit index-1 DAEs have better accuracy and efficiency in comparison with the existing constant and variable step BDF methods.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

KAEDAH BLOK FORMULASI BEZA KE BELAKANG UNTUK MENYELESAIKAN PERSAMAAN PEMBEZAAN BIASA DAN ALJABAR

Oleh

NAGHMEH ABASI

Januari 2014

Pengerusi: Dato’ Mohamed Bin Suleiman, Ph.D.
Fakulti: Institut Penyelidikan Matematik (INSPEM)

ACKNOWLEDGEMENTS

First of all, I would like to express my profound gratitude to Allah for giving this opportunity to continue my study in Malaysia.

I am extremely indebted to my supervisor, Professor Dato’ Dr. Mohamed Bin Suleiman, for his excellent supervision, insightful comments, invaluable guidance and for the financial support. He is the one always trying to keep me calm during some difficulties. He deserves special recognition because without his help, this research would not be finished. He helped me more than I can express them in words, may allah bless him.

Thanks to dear Professor. Dr. Fudziah Ismail, the head of the mathematic department and as a member of supervisory committee for giving useful comments and cooperation.

I would like to thank to Associate Professor Dr. Zarina Bibi Ibrahim being as a member of the supervisory committee for her cooperation and guidance.

My sincere appreciation to Prof. Dr. Kamal Arfin M. Atan, Director of INSPEM and all members of Institute for Mathematical Research (INSPEM), for their great support and guidance to provide a unique academic environment.

I would like to thank to all the lectures of Institute for Mathematical Research and Department of Mathematics, Universiti Putra Malaysia.

My deep gratitude and special thanks goes to my grandmother (Mrs. Tahmineh Khahi), my lovely parents (Mr. Mostafa Abbasi and Mrs. Fahimeh Tehrani), my beloved sisters (Mrs. Neda and Nikoo), my dear brother (Mr. Mohammad Hasan), my kind brothers-in-law (Mr. Majid and Ehsan) and my sweet niece and nephew (Ava and Nikbod) for their love, support, encouragement and all their prayers.

Finally I would like to thank all my friends, particulary Hamisu Musa, Faranak Rabiei, Forough Barani, Ehsan Oskoueian, Mahsa Barkhi, Sima Taheri and Leila Tafreshi.
I certify that a Thesis Examination Committee has met on 10 January 2014 to conduct the final examination of Naghmeh Abasi on her thesis entitled "Block Backward Differentiation Formula for Solving Ordinary and Algebraic Differential Equations" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

Azmi bin Jaafar, PhD
Associate Professor
Faculty of Computer Science and Information Technology
Universiti Putra Malaysia
(Chairman)

Zanariah binti Abdul Majid, PhD
Associate Professor
Faculty of Science
Universiti Putra Malaysia
(Internal Examiner)

Mohd Rizam bin Abu Bakar, PhD
Associate Professor
Faculty of Science
Universiti Putra Malaysia
(Internal Examiner)

Abduvali Khaldjigitov, PhD
Professor
National University of Uzbekistan
Uzbekistan
(External Examiner)

[Signature]

NORITAH OMAR, PhD
Associate Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 10 March 2014
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy.

The members of the Supervisory Committee were as follows:

Dato’ Mohamed Bin Suleiman, PhD
Professor
Institute for Mathematical Research
Universiti Putra Malaysia
(Chairperson)

Fudziah Ismail, PhD
Professor
Faculty of Science
Universiti Putra Malaysia
(Member)

Zarina Bibi Ibrahim, PhD
Associate Professor
Faculty of Science
Universiti Putra Malaysia
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:

vi
Declaration by graduate student

I hereby confirm that:
• this thesis is my original work;
• quotations, illustrations and citations have been duly referenced;
• this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
• intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia(Research) Rules 2012;
• written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published in book form;
• there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: ___________________________ Date: ___________________________

Name and Matric No: __
Declaration by Members of Supervisory Committee

This is to confirm that:
- the research conducted and the writing of this thesis was under the supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature: ________________
Name of Chairman of Supervisory Committee: ________________

Signature: ________________
Name of Member of Supervisory Committee: ________________

Signature: ________________
Name of Member of Supervisory Committee: ________________
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATIONS</td>
<td>i</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>iv</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>v</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xiv</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION

1.1 Introduction
1.2 Motivation of the study
1.3 Objectives of the thesis
1.4 Scope and Relevance
1.5 Outline of the thesis

2 LITERATURE REVIEW

2.1 Introduction
2.2 Ordinary Differential Equations
 2.2.1 Basic definitions and theorems for ODEs
 2.2.2 Numerical methods for stiff ODEs
 2.2.3 Block methods for ODEs
 2.2.4 Block methods for stiff ODEs
 2.2.5 Numerical methods with off-step points for ODEs
2.3 Differential Algebraic Equations
 2.3.1 Basic Definitions for DAEs
 2.3.2 Numerical methods for DAEs
 2.3.3 Numerical methods for index-1 DAEs
 2.3.4 Numerical methods for higher index DAEs

3 DERIVATION OF 2-POINT BLOCK BDF METHOD WITH OFF-STEP POINTS FOR SOLVING STIFF ODES

3.1 Introduction
3.2 2-point block BDF with off-step points formulation
3.3 Derivation of predictors
3.4 Order of the method
6.6 Choosing the stepsize 108
6.7 Test problems 108
6.8 Numerical results 108
6.9 Discussion on the results 116
6.10 Conclusion 116

7 CONCLUSION 117
7.1 Summary of thesis 117
7.2 Future work 118

REFERENCES/BIBLIOGRAPHY 119
APPENDICES 127
BIODATA OF STUDENT 136
LIST OF PUBLICATIONS 137