

UNIVERSITI PUTRA MALAYSIA

CHARACTERIZATION AND OPTIMIZATION OF BIOFLOCCULANT DERIVED THROUGH IMPLEMENTATION OF SUBMERGED AND SOLID-STATE FERMENTATION OF Bacillus subtilis UPMB13

ZUFARZAANA ZULKEFLEE

FPAS 2014 12

CHARACTERIZATION AND OPTIMIZATION OF BIOFLOCCULANT DERIVED THROUGH IMPLEMENTATION OF SUBMERGED AND SOLID-STATE FERMENTATION OF Bacillus subtilis UPMB13

ZUFARZAANA ZULKEFLEE

DOCTOR OF PHILOSOPHY UNIVERSITI PUTRA MALAYSIA

2014

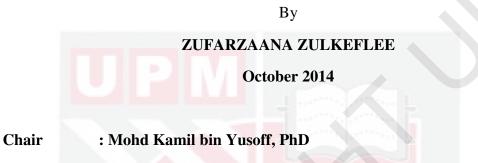
CHARACTERIZATION AND OPTIMIZATION OF BIOFLOCCULANT DERIVED THROUGH IMPLEMENTATION OF SUBMERGED AND SOLID-STATE FERMENTATION OF *Bacillus subtilis* UPMB13

By

ZUFARZAANA ZULKEFLEE

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirements for the Degree of Doctor of Philosophy

October 2014


All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of any material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the degree of Doctor of Philosophy

CHARACTERIZATION AND OPTIMIZATION OF BIOFLOCCULANT DERIVED THROUGH IMPLEMENTATION OF SUBMERGED AND SOLID-STATE FERMENTATION OF *Bacillus subtilis* UPMB13

Faculty : Environmental Studies

Breakthroughs in bioproduction field have opened up vast opportunities in the exploration of bio-based products as substitutes to chemical derivatives for water treatment technologies. In that framework the interest of finding an ecologically benign solution specifically focusing on treating suspended solids pollution was explored. As production cost becomes the limiting factor which restricts wider applications of bioproducts for alternative water treatment, fermentation technology was applied in this study; basic substrates were utilized through non-elaborative techniques for bioproduction of a biopolymeric flocculant. The main goal of this study is to produce a biopolymer with flocculating capabilities which can substitute the commonly used commercial flocculants through two fermentation strategies; namely, the submerged (SmF) and solid-state (SSF) fermentations. The flocculating performances were measured through kaolin assays based on the clarity of the suspension and the visible flocs formed after treatment with the bioflocculant. The characterizations of the bioflocculants produced were scrutinized for further understanding of their nature and properties which contributed to their flocculating abilities. The bioflocculant produced through the better fermentation strategy was further studied for its flocculating performances and in comparison to other commercial flocculants. A novel low molecular weight (10-50 x 10^3 Da), high flocculating biopolymer denoted as UPMBF13 was successfully produced through de novo pathway from the SmF and the SSF of Bacillus subtilis UPMB13. It was found to consist of poly-y-glutamic acid and polysaccharide derivatives, with hydroxyl, carboxyl, methoxyl and carbonyl functional groups and was either fibrous (SmF) or granular (SSF) in natures, which are the major known characteristics of a bioflocculant. The best production strategy for UPMBF13 was found to be through the SmF by manipulating the optimum conditions (media: no additional supplement; duration: 24-72 hrs; temperature: 25-30°C; pH: 7.0-8.0; shaking

speed: 100-200 rpm) for growth. This led to a maximum performance of 95% in flocculating activity with large visible floc formations, comparable to those from the commercial flocculant polyacrylamide (maximum activity: 98%), and superior to that of polyaluminium chloride (maximum activity: 47%). The production of UPMBF13 through SSF was also verified to be possible, but yielded an inferior product (maximum activity: 71%) with barely any flocs formed upon treatment. Furthermore, the SmF strategy yielded at an average two-fold the amount of UPMBF13 at 2.70 g/L while the SSF produced about 1.25 g/kg in 72 hrs. Overcoming the inferior performance of the SSF by scaling-up the process to a pilot-scale level (near-to-adiabatic, non-sterilized condition with continuous oxygen flow) led to a competitive environment where the autochthonous microbes proliferated over UPMB13 and produced their own bioflocculants which obscured the performance of UPMBF13. In general, the results from this study confirmed that the production of UPMBF13 is feasible through de novo pathway with no additional input of L-glutamic acid supplement. High flocculating performance was achieved solely with basic substrates without further manipulations and modifications. Furthermore, UPMBF13 is cation-independent once extracted and purified, requiring no additional cation source for its application in suspended solid treatments.

Keywords: Bacillus subtilis UPMB13, bioflocculant, extracellular polymeric substance, biopolymer, submerged fermentation, solid-state fermentation

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

PENCIRIAN DAN PENGOPTIMUMAN BIOFLOKULAN YANG DIHASILKAN MELALUI IMPLEMENTASI KAEDAH FERMENTASI TERENDAM DAN FERMENTASI KEADAAN PEPEJAL KE ATAS *Bacillus subtilis* UPMB13

Oleh

ZUFARZAANA ZULKEFLEE Oktober 2014

Pengerusi : Mohd Kamil bin Yusoff, PhD

Fakulti : Pengajian Alam Sekitar

Kejayaan cemerlang dalam bidang biopembuatan telah membuka banyak peluang dalam penerokaan produk berasaskan biologi sebagai pengganti kepada derivatif-derivatif kimia dalam teknologi rawatan air. Selaras dengan itu, kepentingan mencari penyelesaian yang lebih mesra alam, khususnya dalam merawat pencemaran pepejal terampai telah diterokai. Oleh kerana kos pengeluaran telah dikenal pasti sebagai faktor pengehad yang menyekat penggunaan bioproduk sebagai rawatan air alternatif secara meluas, teknologi fermentasi telah digunakan dalam kajian ini; substrat asas telah digunakan melalui teknik mudah untuk biopembuatan flokulan berasaskan biopolimer. Matlamat utama kajian ini adalah untuk menghasilkan sejenis biopolimer dengan keupayaan flokulasi yang boleh menggantikan flokulan-flokulan komersial yang biasa digunakan melalui dua strategi fermentasi iaitu kaedah fermentasi terendam (SmF) dan fermentasi keadaan pepejal (SSF). Kadar prestasi flokulasi diukur melalui ujian menggunakan kaolin berdasarkan kejernihan ampaian dan penghasilan flok selepas rawatan menggunakan bioflokulan tersebut. Pencirian bioflokulan yang dihasilkan diteliti untuk pemahaman lebih lanjut tentang sifat-sifat asas yang menyumbang kepada kebolehannya sebagai flokulan. Bioflokulan yang dihasilkan melalui kaedah fermentasi yang lebih baik telah dikaji lebih lanjut bagi mengenalpasti faktor bagi meningkatkan kadar prestasi flokulan dan mengkaji perbandingan prestasi bioflokulan tersebut dengan beberapa flokulan komersial. Sebuah biopolimer novel yang berprestasi tinggi dengan jisim molekular rendah (10-50 x 10³ Da), dinamakan sebagai UPMBF13 telah berjaya dihasilkan melalui laluan de novo dari SmF dan SSF Bacillus subtilis UPMB13. Ia didapati terdiri daripada asid poli-y-glutamik dan derivatif polisakarida dengan kumpulan berfungsi hidroksil, karboksil, metoksil and karbonil serta bersifat samada bergentian (SmF) atau berbutir (SSF), di mana kesemuanya dikenali sebagai ciri-ciri

major bioflokulan. Kaedah fermentasi terendam telah dibuktikan sebagai kaedah terbaik bagi pengeluaran UPMBF13 melalui manipulasi pertumbuhan dan penyediaan keadaan optimum (media: tiada supplemen tambahan; tempoh: 24-72 jam; suhu: 25-30°C; pH: 7.0-8.0; kelajuan goncangan: 100-200 rpm). Ini telah membawa kepada kadar prestasi flokulasi maksimum sebanyak 95% dengan pembentukkan flok besar dapat diperhatikan, setanding dengan flokulan komersial poliakrilamida (flokulasi maksimum: 98%) dan lebih tinggi daripada polialuminium klorida (flokulasi maksimum: 47%). Kaedah fermentasi keadaan pepejal juga telah dibuktikan mampu dilaksanakan bagi pengeluaran UPMBF13, namun menghasilkan produk yang lebih rendah prestasi (flokulasi maksimum: 71%) dengan hampir tiada pengahasilan flok. Tambahan pula, kaedah SmF berjaya menghasilkan UPMBF13 pada kuantiti dua kali ganda; iaitu 2.7 g/L, manakala kaedah SSF hanya menghasilkan 1.25 g/kg UPMBF13 dalam masa 72 jam. Bagi mengatasi prestasi rendah kaedah SSF, percubaan menaikkan skala proses SSF di tahap skala perintis (keadaan hampir adiabatik, tidak steril dengan aliran oksigen berterusan) telah meningkatkan persekitaran yang lebih berdaya saing di mana mikroorganisma sedia ada yang hadir dalam substrat telah mengatasi pertumbuhan UPMB13 dan menghasilkan bioflokulan mereka sendiri yang mengatasi prestasi UPMBF13. Secara amnya, hasil kajian mengesahkan pengeluaran UPMBF13 boleh dilaksanakan melalui laluan de novo tanpa memerlukan penambahan asid L-glutamik. Kadar prestasi flokulasi yang tinggi telah dicapai dengan hanya menggunakan substrat asas tanpa manipulasi dan pengubahsuaian lanjut. Tambahan lagi, UPMBF13 bebas kebergantungan terhadap kation setelah diekstrak, oleh itu tiada sumber kation tambahan yang diperlukan bagi merawat pencemaran pepejal terampai.

Kata kunci: Bacillus subtilis UPMB13, bioflokulan, bahan polimer luar sel, biopolimer, fermentasi terendam, fermentasi keadaan pepejal

ACKNOWLEDGEMENTS

Praise to Allah S.W.T for the time, strength, health, patience, knowledge and blessing given to me which led to the successful completion of this study.

First and foremost, I would like to thank my supervisors Assoc. Prof. Dr. Mohd. Kamil Yusoff, Assoc. Prof. Dr. Ahmad Zaharin Aris and Prof. Dr. Zulkifli Hj. Shamsuddin for the guidance, advises and support given all throughout my study.

Secondly, I would like to thank everyone in general who had directly or indirectly helped me throughout the study especially my friends and colleagues from the Faculty of Environmental Studies, Universiti Putra Malaysia.

I would also like to express undeniable gratitude to Prof. Dr. Antoni Sanchez Ferrer for all the patience, guidance, help and support given throughout the mobility programme at Universitat Autonoma de Barcelona (UAB), as well as to all my colleagues in GICOM, UAB (Juli, Bea, Laszlo, Caterina, Rebecca, Angelica, Lucia, David, Tere, Raquel, Xavi) and my friends in Barcelona especially Rim and the guys from Malaysia@Spain (Farah, Tasha, Ainur, Q, Yassin, Ammar, Deena, Zul Jemaat, Ina, Shafik, Aini, Ben, Akma, Merl, Zul, Sobiah, Own, Zainul, Shah).

Furthermore, I would like to acknowledge the funding received that had financially supported this study through the Fundamental Research Grant Scheme [02/04/10/832FR], Ministry of Higher Education, Malaysia for the year 2010 and 2011 and the European Commission under the Erasmus Mundus Action 2 Plan (MAHEVA) for the scholarship awarded for the doctoral mobility at UAB, Spain for the year 2012 and 2013. I would also like to acknowledge the support given by Universiti Putra Malaysia for providing the facilities and means throughout the conduct of this research.

Finally, special thanks to Muhammad Raza and my family (Yayah, Mama, Nechang, Amin, Muaz Wildan, Diya Nadrah) for all the time, love, emotional support, encouragement and unwavering faith given to me in the journey towards completing this doctoral degree.

I certify that a Thesis Examination Committee has met on 27 October 2014 to conduct the final examination of Zufarzaana binti Zulkeflee on her thesis entitled "Characterization and Optimization of Bioflocculant derived through Implementation of Submerged and Solid-state Fermentation of *Bacillus subtilis* UPMB13" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

Ahmad Makmom bin Abdullah, PhD

Associate Professor Faculty of Environmental Studies Universiti Putra Malaysia (Chairman)

Mohammad Pauzi Zakaria, PhD

Professor Faculty of Environmental Studies Universiti Putra Malaysia (Internal Examiner)

Nor Azwady Abd Aziz, PhD Senior Lecturer

Faculty of Science Universiti Putra Malaysia (Internal Examiner)

Teresa Gea Leiva, PhD

Professor Department of Chemical Engineering University Autonoma de Barcelona Spain (External Examiner)

ZULKARNAIN BIN ZAINAL, PhD

Professor and Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date: 23 January 2015

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirements for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Mohd Kamil Yusoff, PhD

Associate Professor UPM Consultancy and Services Sdn. Bhd. Universiti Putra Malaysia (Chairman)

Zulkifli Hj. Shamsuddin, PhD Professor Faculty of Agriculture Universiti Putra Malaysia (Member)

Ahmad Zaharin Aris, PhD

Associate Professor Faculty of Environmental Studies Universiti Putra Malaysia (Member)

BUJANG BIN KIM HUAT, PhD

Professor and Dean School of Graduate Studies Universiti Putra Malaysia

Date:

Declaration by graduate student

I hereby confirm that:

- this thesis is my original work;
- quotations, illustrations and citations have been duly referenced;
- this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature:	Date:	

Name and Matric No.: Zufarzaana Zulkeflee (GS

Declaration by Members of Supervisory Committee:

This is to confirm that:

- the research conducted and writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature: Name of the Chairman of the Supervisory Committee: <u>Mohd Kamil Yusoff, PhD</u>

Signature: Name of the Member of the Supervisory Committee: Zulkifli Hj. Shamsuddin, PhD

TABLE OF CONTENTS

		Р	age
ABST	FRACT		i
ABST	ΓRAK		iii
ACK	NOWL	EDGEMENT	v
APPF	ROVAL		vi
DECI	LARAT	TION	viii
LIST	OF TA	BLES	xiv
LIST	OF FI	GURES	XV
LIST	OF AB	BREVIATIONS/NOTATIONS/GLOSSARY OF TERMS	xix
LIST	OF AP	PENDICES	xxi
CHA	PTER		
1	INTR	ODUCTION	
	1.1	Background of the Study	1
	1.2	Problem Statement	2
	1.3	Research Questions	5
	1.4	Objectives	5
	1.5	Significance of Study	5
	1.6	Thesis Structure	6
	1.7	Conceptual Framework	7

1.1	Objectives	
1.5	Significance of Study	

- Thesis Structure 1.6
- 1.7 Conceptual Framework

LITERATURE REVIEW 2

C

2.1	Environmental Issues and Need	8
	2.1.1 Problem background	8
	2.1.2 River water quality status	9
	2.1.3 Suspended solids pollution and other concerns	9
2.2	Treatment Strategies and Possible Applications	10
	2.2.1 On-field application and limitations	10
	2.2.2 Wastewater treatments	12
2.3	Suspended Solids and Turbidity	12
	2.3.1 Concept of the Problem Statement	13
2.4	Flocculation	14
	2.4.1 Types of Flocculants	14
	2.4.2 Advantages and Disadvantages of Different	15
	Types of Flocculants	
	2.4.3 Concept and Principle of Flocculation	16
2.5	Bioflocculants	18
	2.5.1 Characteristics of Bioflocculant-producing Bacteria	18
	2.5.2 Production of Bioflocculants by Bacillus species	19
	2.5.3 Production by Bacillus subtilis	19
2.6	Production of Bioflocculants	20

	2.6.1 Submerged Fermentation	21
	2.6.2 Solid-state Fermentation	23
2.7	Factors Affecting Bioflocculation Performances	25
	2.7.1 Cation Dependency	25
	2.7.2 pH Tolerance	26
	2.7.3 Dosage Requirements	27
2.8	Other Applications	28
2.0	Outor Applications	20

3 MATERIALS AND METHODS

3.1	General Materials and Methods	30
	3.1.1 Bacterial Strain	30
	3.1.2 Validation of the Bacterial Strain <i>Bacillus subtilis</i>	31
	UPMB13	
	3.1.3 Measurements of Bacterial Growth	31
	3.1.4 Bioflocculant Source	31
	3.1.5 Flocculation Assay	32
3.2	Data Analysis	33

4 PRODUCTION OF BIOFLOCCULANTS BY *Bacillus subtilis* UPMB13 THROUGH SUBMERGED FERMENTATION (SmF)

4.1	Introduction	34
4.2	Materials and Methods	36
	4.2.1 L-glutamic Acid Supplement	36
	4.2.2 Timeline of Bioflocculant Production during Growth	36
	of Bacterial Culture	
	4.2.3 Effect of Nutrient Supply on Bioflocculant Production	36
	during Growth	
	4.2.4 Oxygen Fluxes	37
	4.2.5 Effect of Initial pH on Growth and Bioflocculant	37
	Production	
	4.2.6 Effect of Incubation Temperature on Bioflocculant	37
	Production during Growth	
	4.2.7 Distribution of Flocculating Activity among Culture	38
	Components	
	4.2.8 Effect of Sub-culturing on the Bioflocculant	38
	Production by Different Generations of UPMB13	
4.3	Results and Discussion	38
	4.3.1 L-glutamic Acid Independent Production of	39
	Bioflocculant by UPMB13	
	4.3.2 Bioflocculant Production during Growth	41
	4.3.3 Effect of Different Nutrient Inputs on Bioflocculant	42
	Production and Performance by UPMB13	
	4.3.4 Oxygen Fluxes from Culture Conditions	43
	4.3.5 Initial Fermentation pH Effect on Growth and	46

Bioflocculant Production 4.3.6 Effect of Incubation Temperature on Bioflocculant Production

4.3.7 Flocculating Activity by Different Culture Parts494.3.8 Genetic Competence50

47

52

4.4 Conclusion

5 UTILIZATION OF SOYBEAN FIBRES RESIDUES (OKARA) FOR THE PRODUCTION OF BIOFLOCCULANTS BY *Bacillus subtilis* UPMB13 THROUGH SOLID STATE FERMENTATIONS (SSF)

5.1	Introduction	53
5.2	Materials and Methods	54
	5.2.1 Substrate Mixture	54
	5.2.2 Initial Moisture Content	54
	5.2.3 Initial pH Adjustment	55
	5.2.4 Inocula Preparation	56
	5.2.5 Experimental Setup for Laboratory Scale SSF	56
	5.2.6 Experimental Setup for Pilot Scale SSF	57
	5.2.7 Flocculation Assay	58
5.3	Results and Discussion	59
	5.3.1 Laboratory Scale SSF	59
	5.3.2 Pilot Scale SSF	65
5.4	Conclusion	71

6 EXTRACTION, PURIFICATION AND CHARACTERIZATION OF THE BIOFLOCCULANT PRODUCED BY *Bacillus subtilis* UPMB13

6.1	Introduction	73
6.2	Materials and Methods	74
	6.2.1 Extraction and Purification	74
	6.2.2 Total Protein Determination	78
	6.2.3 Amino Acid Analysis	79
	6.2.4 Functional Group Determination	80
	6.2.5 Molecular Weight Determination Using SDS-PAGE	81
	Electrophoresis	
	6.2.6 Surface Morphology Characteristic through SEM	82
	Imaging	
6.3	Results and Discussion	82
	6.3.1 Purified Bioflocculant Recovered	83
	6.3.2 Total Protein Content and Amino Acid Derivatized	84
	6.3.3 Infrared Spectra	87
	6.3.4 Molecular Weight of UPMBF13	92
	6.3.5 Surface Morphology Characteristics	95
6.4	Conclusion	102

PERFORMANCE COMPARISON AND FLOCCULATING OPTIMIZATION OF UPMBF13

7.1	Introduction	103
7.2	Materials and Methods	104
	7.2.1 Jar-test Setup for Flocculating Performance	104
	Comparison	
	7.2.2 Factors Affecting Flocculating Performances	105
7.3	Results and Discussion	106
	7.3.1 Flocculating Performances Comparison	107
	7.3.2 Cation Dependency	111
	7.3.3 pH Tolerance	113
	7.3.4 Cation Dosage	115
	7.3.5 Bioflocculant Dosage	117
	7.3.6 Dialyzation Effect	120
7.4	Conclusion	123

8 SUMMARY, CONCLUSION AND RECOMMENDATIONS FOR FUTURE RESEARCH

8.1	Summary of the findings	124
	8.1.1 SmF Implementation	124
	8.1.2 SSF Implementation	124
	8.1.3 UPMBF13 Attributions	125
	8.1.4 UPMBF13 Flocculating Performances	125
8.2	Conclusions	126
8.3	Recommendations for future research	126

REFERENCES127APPENDICES149BIODATA OF STUDENT164LIST OF PUBLICATIONS165