ANTIMICROBIAL ACTIVITY OF CITRUS FRUITS AND EFFECTS OF KEY LIME (Citrus aurantifolia Christm. & Panzer) JUICE EXTRACT ON QUALITY CHANGES OF WHITE SHRIMP (Penaeus vannamei Boone)
ANTIMICROBIAL ACTIVITY OF CITRUS FRUITS AND EFFECTS OF KEY LIME (*Citrus aurantifolia* Christm. & Panzer) JUICE EXTRACT ON QUALITY CHANGES OF WHITE SHRIMP (*Penaeus vannamei* Boone)

By

SELVI VELU

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science

January 2014
 COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
ANTIMICROBIAL ACTIVITY OF CITRUS FRUITS AND EFFECTS OF KEY LIME (Citrus aurantifolia Christm. & Panzer) JUICE EXTRACT ON QUALITY CHANGES OF WHITE SHRIMP (Penaeus vannamei Boone)

By

SELVI VELU

January 2014

Chairman : Professor Fatimah Abu Bakar, PhD
Faculty : Food Science and Technology

The demand for novel antimicrobial agents and natural preservatives from natural resources has increased worldwide particularly in the food preservation field. In this study, antimicrobial activity of musk lime (Citrus microcarpa), key lime (Citrus aurantiifolia Christm. & Panzer) and lemon (Citrus limon) extracts were evaluated against various food borne pathogens and spoilage bacteria using the disc diffusion test. The antimicrobial activity was evaluated at 50% and 100% juice. Alternatively, no information was available regarding application of key lime (KL) juice extract as a preservation agent for white shrimp (Penaeus vannamei Boone). Hence, this study further aimed to investigate the effect of the key lime juice extract (100% concentration level) in combination with vacuum packaging (VP) and storage bag (SB) on microflora and biochemical changes in white shrimp stored at 2±1 ºC. Microbiological and biochemical analysis were carried out at 3 days interval till the 12th day of storage. Microbiological analyses were performed for the total mesophilic aerobic count, total mesophilic anaerobic count, total aerobic psychrotrophic count, proteolytic bacterial count, histamine, putrescine and cadaverine producer count. Proximate content on 0 and 12th day of storage, color changes of cephalothoraxes, pH and total volatile base nitrogen (TVBN) was the biochemical analysis performed. For the antimicrobial activity of various extraction solvent of musk lime, key lime and lemon, ethanol extracts exhibited remarkable diameter of inhibition zone (DIZ) compared to water and juice extract towards all of the tested microorganisms. Largest DIZ were obtained using ethanol extract of musk lime (39.7 mm), key lime (26.7 mm) and lemon (32.0 mm) particularly against Aeromonas veroni at 100% concentration level. As for juice extract, KL juice extracts revealed prominent antimicrobial activity compared to musk lime and lemon juice extracts. Accordingly, white shrimps treated with KL juice extract (100% concentration level) in combination with VP exhibited significant (p<0.05) lower count for all of the microbiological analysis performed. As for the total aerobic...
mesophilic count, significant (p<0.05) lower counts obtained in VP+KL, VP and SB+KL samples. Prominent total proteolytic counts were obtained from the 9th day of storage onwards in VP+KL and SB+KL samples. Similarly putrescine and cadaverine former counts were significantly lower in VP+KL and SB+KL samples. On the whole, VP+KL treated samples revealed a lowest bacterial count in the range of 4.37 to 4.91 log cfu/g at 12 day of storage. As for proximate content, VP+KL samples retained highest percentage of protein on the 12th day of storage. Moreover, VP+KL and VP samples showed significant (p<0.05) results for the color changes of cephalothorax starts from the 6th day of storage. Besides, significantly lower TVBN content was obtained in VP+KL (5.33 mg N/100g) followed by VP (6.03 mg N/100g) samples on the 12th day of storage. Therefore, VP+KL treatment might be used as an alternative preservative method for post mortem storage of white shrimp and may recommend for quality preservation of other fishery products. The remarkable inhibitory activity of musk lime, key lime and lemon extracts of various extraction solvents (ethanol, water and juice) may attribute them as potential antimicrobial agents and natural preservatives as well.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk Ijazah Master Sains

AKTIVITI ANTIMIKROB BUAH CITRUS DAN KESAN JUS LIMAU NIPIS
(*Citrus aurantifolia* Christm. & Panzer) PADA PERUBAHAN KUALITI
UDANG PUTIH (*Penaeus vannamei* Boone)

Oleh

SELVI VELU
Januari 2014

Pengerusi : Profesor Fatimah Abu Bakar, PhD
Fakulti : Sains dan Teknologi Makanan

Permintaan untuk bahan antimikrob baru dan bahan pengawet semula jadi daripada sumber semula jadi telah meningkat di seluruh dunia terutamanya dalam bidang pengawetan makanan. Dalam kajian ini, limau kasturi (*Citrus microcarpa*), limau nipis (*Citrus aurantifolia* Christm. & Panzer) dan lemon (*Citrus limon*) telah dinilai aktiviti antimikrob terhadap pelbagai patogen makanan dan bakteria perosak makanan menggunakan ujian penyebaran cakera. Aktiviti antimikrob telah dinilai pada tahap kepekatan 50% dan 100% menggunakan pelbagai pelarut pengekstrakan' etanol (gred makanan), air dan jus. Selain itu, tiada maklumat boleh didapati mengenai penggunaan ekstrak jus limau nipis (KL) sebagai bahan pengawetan udang putih (*Penaeus Vannamei* Boone). Oleh itu, kajian ini selanjutnya telah bertujuan untuk mengkaji kesan utama ekstrak jus limau nipis (tahap kepekatan 100%) kombinasi dengan pembungkusan vakum (VP) dan beg penyimpanan (SB) pada perubahan mikroflora dan biokimia dalam udang putih yang disimpan pada 2 ± 1 ºC. Analisa mikrobiologi dan biokimia telah dijalankan pada 3 hari selang hingga ke hari ke-12 penyimpanan. Analisis mikrobiologi telah dijalankan untuk jumlah kiraan mesofil aerob, jumlah kiraan anaerob mesofil, jumlah kiraan psikotrolf aerob, kiraan bakteria proteolitik, histamin, putrescin dan cadaverin. Kandungan proksimat pada hari 0 dan 12, perubahan warna cephalothoraxes, pH dan jumlah nitrogen asas merupakan (TVBN) adalah analisis biokimia yang telah dilakukan. Untuk aktiviti antimikrob dengan penggunaan pelbagai pelarut kasturi limau, limau nipis dan lemon, ekstrak etanol telah mempermaikan diameter zon perencatan yang luar biasa berbanding dengan ekstrak air dan jus terhadap semua mikroorganisma yang diuji. Diameter zon perencatan yang terbesar telah ditunjukkan oleh ekstrak etanol daripada limau kasturi (39.7 mm), limau nipis (26.7 mm) dan lemon (32.0 mm) terutamanya terhadap *Aeromonas veronii* pada tahap kepekatan 100%. Bagi jus ekstrak pula, ekstrak jus limau nipis telah mendedahkan aktiviti antimikrob yang menonjol berbanding ekstrak jus limau kasturi dan lemon. Oleh itu, udang putih yang telah dirawat dengan ekstrak jus limau nipis (paras kepekatan 100%) dengan
kombinasi pek vakum (VP) telah mempamerkan keputusan yang signifikan (p<0.05) yang lebih rendah untuk semua analisis mikrobiologi. Bagi jumlah kiraan mesofil aerob, bilangan yang signifikan (p <0.05) lebih rendah telah diperolehi dalam sampel udang putih dalam pek VP+KL, VP dan SB+KL. Jumlah kiraan proteolitik terkemuka diperolehi dari hari ke-9 dan seterusnya dalam sampel udang putih di pek VP+KL dan SB+KL. Begitu juga putrescin dan cadaverin, kiraan bakteria adalah lebih rendah dalam sampel di VP+KL dan SB+KL. Secara keseluruhan, sampel udang putih yang telah dirawat dalam keadaan VP+KL telah menunjukkan kiraan bakteria paling rendah dalam jutal 4.37 - 4.91 log cfu/g pada hari ke 12 penyimpanan. Bagi kandungan proksimat, sampel dalam VP+KL telah mengekalkan peratusan tertinggi protein pada hari ke-12 penyimpanan. Selain itu, sampel VP+KL dan VP telah menunjukkan hasil yang signifikan (p <0.05) bagi perubahan warna cephalothoraxes bermula dari hari ke 6 penyimpanan. Selain itu, kandungan TVBN jauh lebih rendah telah diperolehi dalam VP+KL (5.33 mg N / 100g), diikuti oleh VP (6.03 mg N / 100g) sampel pada hari ke-12 penyimpanan. Oleh itu, rawatan udang putih dalam keadaan VP+KL boleh digunakan sebagai satu kaedah pengawet alternatif untuk penyimpanan udang putih dan boleh mencadangkan untuk pemuliharaan kualiti produk perikanan yang lain. Aktiviti perencatan luar biasa daripada ekstrak limau kasturi, limau nipis dan lemon melalui pelbagai pelarut pengekstrakan (etanol, air dan jus) boleh menyifatkan mereka sebagai bakal agen antimikrob dan juga sebagai bahan pengawet semulajadi.
ACKNOWLEDGEMENTS

In the name of ultimate God, most Gracious, most Merciful. All praise and gratitude be to God for His blessing and love that allow me to complete this piece of work.

First and foremost, I would like to extend my deepest gratitude to my supervisor, Professor Dr. Fatimah Abu Bakar for all her invaluable guidance and encouragement throughout my study and through the time I share. Thank you very much for her motivation, encouragement, patience and being so supportive. It has been a great pleasure to conduct research under her supervision. I would like to extend my sincere gratitude to my co-supervisors, Professor Dr. Nazamid Saari and Dr. Nor Ainy Mahyudin for sharing their knowledge, experience, support and motivation.

My heartfelt thank goes to my beloved parents. To my beloved mother, thank you so much for your unconditional love, support and understanding. I will never have moved this far in my life without your blessing and endless love. To my late father, thank you very much for all your invaluable advice and teaching when you were around. To my sisters and my brothers, bunches of thanks for supporting and accompanying me throughout the hard times.

My special gratitude goes to my adopted sister for her countless helps throughout this study period. I would never forget her unconditional love, encouragement, motivation, advice, support and being a good friend.

My sincere thank goes to the post doctorate assigned under my supervisor for his guidance, sharing and helping hand during my study. My warm thanks to all my dearest research mates in the Laboratory of Food Safety and Quality II and other friends in the faculty. I also extend my sincere thanks to all staff of the Faculty of Food Science and Technology for whatever helps during my study.

I would like to acknowledge the Ministry of Science, Technology and Innovation (MOSTI) of Malaysia for the financial support through the Universiti Putra Malaysia Graduate Research Fellowship (GRF).

Last but not least, a special appreciation and gratitude to anyone else whose name is not mentioned here for their invaluable help and encouragement making this piece of work feasible.
I certify that a Thesis Examination Committee has met on 15 January 2014 to conduct the final examination of Selvi a/p Velu on her thesis entitled “Antimicrobial Activity of Citrus Fruits and Effects of Key Lime (Citrus aurantifolia Christm. & Panzer) Juice Extract on Quality Changes of White Shrimp (Penaeus vannamei Boone)” in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master of Science.

Members of the Thesis Examination Committee were as follows:

Son Radu, PhD
Professor
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Chairman)

Yaya Rukayadi, PhD
Associate Professor
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Internal Examiner)

Abdulkarim Sabo Mohammed, PhD
Associate Professor
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Internal Examiner)

Norarakiah binti Abdullah Sani, PhD
Senior Lecturer
Universiti Kebangsaan Malaysia
Malaysia
(External Examiner)

NORITAH OMAR, PhD
Associate Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 10 March 2014
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Fatimah Abu Bakar, PhD
Professor
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Chairman)

Nor Ainy Mahyudin, PhD
Associate Professor
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Member)

Nazamid Saari, PhD
Professor
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

Declaration by the student

I hereby confirm that:

- this thesis is my original work
- quotations, illustrations and citations have been duly referenced
- the thesis has not been submitted previously or concurrently for any other degree at any institutions
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be owned from supervisor and deputy vice chancellor (Research and innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: ______________________ Date: 15 January 2014

Name and Matric No.: SELVI VELU (GS 29176)
Declaration by Members of Supervisory Committee

This is to confirm that:

- the research conducted and the writing of this thesis was under our supervision;

- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature:
Name of Chairman of Supervisory Committee: Professor Dr. Fatimah Abu Bakar

Signature:
Name of Member of Supervisory Committee: Asse. Prof. Dr. Nor Ainy Mahyudin

Signature:
Name of Member of Supervisory Committee: Professor Dr. Nazamid Saari
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>iv</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>vi</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>vii</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>ix</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xvii</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION

2 LITERATURE REVIEW

2.1 Plants/fruits/herbs
2.2 Natural antimicrobials
2.3 Citrus fruits
 2.3.1 Musk lime
 2.3.2 Antimicrobial activity of musk lime
 2.3.3 Key lime
 2.3.4 Antimicrobial activity of key lime
 2.3.5 Lemon
 2.3.6 Antimicrobial activity of lemon
2.4 Food related microorganisms
 2.4.1 Food borne pathogens
 2.4.2 Spoilage bacteria
2.5 Shrimp
 2.5.1 Proximate content of shrimp
 2.5.2 Micro flora in shrimp
2.6 Total volatile base nitrogen (TVBN)
2.7 Melanosis
 2.7.1 Control measures for melanosis
2.8 Vacuum packaging

3 IN VITRO ANTIMICROBIAL ACTIVITY OF ETHANOL, WATER AND JUICE EXTRACTS OF CITRUS FRUITS AGAINST FOOD RELATED MICROORGANISMS

3.1 Introduction
3.2 Materials and Methods
 3.2.1 Test microorganisms
 3.2.2 Plant materials and preparation of the extract
 3.2.3 Determination of pH of juice extracts
 3.2.4 Determination of organic acids in juice extracts
 3.2.5 Antimicrobial susceptibility test
 3.2.6 Statistical analysis
3.3 Results and discussion
3.3.1 pH of the juice extracts 21
3.3.2 Organic acids in juice extracts 22
3.3.3 Antimicrobial activity of the ethanol, water and juice extracts at 100 and 50% concentration level 23

3.4 Conclusion 29

4 EFFECT OF KEY LIME (*Citrus aurantifolia* Christm. & Panzer) JUICE EXTRACT ON MICROBIOLOGICAL CHANGES OF CHILL STORED WHITE SHRIMP, *Penaeus vannamei* Boone
4.1 Introduction 31
4.2 Materials and Methods 31
 4.2.1 White shrimp sampling 31
 4.2.2 Effect of key lime juice extract (100% concentration) on white shrimp 32
 4.2.3 Microbiological analysis 32
 4.2.4 Statistical analysis 34
4.3 Results and Discussion 34
 4.3.1 Microbiological profile of white shrimp during storage 34
4.4 Conclusion 40

5 EFFECT OF KEY LIME (*Citrus aurantifolia* Christm. & Panzer) JUICE EXTRACT ON BIOCHEMICAL CHANGES OF CHILL STORED WHITE SHRIMP, *Penaeus vannamei* Boone
5.1 Introduction 42
5.2 Materials and Methods 43
 5.2.1 White shrimp sampling 43
 5.2.2 Effect of key lime juice extract (100% concentration) on white shrimp 43
 5.2.3 Determination of proximate analysis of white shrimp 43
 5.2.4 Determination of color changes of cephalothorax carapace 43
 5.2.5 Determination of pH 43
 5.2.6 Determination of total volatile base nitrogen 44
 5.2.7 Statistical analysis 44
5.3 Results and Discussion 44
 5.3.1 Proximate content of white shrimp 44
 5.3.2 Color changes of cephalothoraxes carapace 48
 5.3.3 Changes of pH 52
 5.3.4 Changes of total volatile base nitrogen 53
5.4 Conclusion 54

6 SUMMARY, GENERAL CONCLUSION AND RECOMMENDATION FOR FUTURE RESEARCH 55

BIBLIOGRAPHY 57