MICROSCOPIC CHANGES IN OVARIES IN RELATION TO INFLAMMATORY MEDIATORS OF BLOOD PLASMA IN NORMAL AND SUPEROVULATED RATS

BANULATA GOPALSAMY

FPV 2013 15
MICROSCOPIC CHANGES IN OVARIES IN RELATION TO INFLAMMATORY MEDIATORS OF BLOOD PLASMA IN NORMAL AND SUPEROVULATED RATS

By

BANULATA GOPALSAMY

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science

August 2013
DEDICATION

WITH APPRECIATION AND RESPECT,

THIS THESIS IS DEDICATED

TO

MY PARENTS MR & MRS GOPALSAMY AND MY FAMILY
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the degree of Master of Science

MICROSCOPIC CHANGES IN OVARIES IN RELATION TO INFLAMMATORY MEDIATORS OF BLOOD PLASMA IN NORMAL AND SUPEROVULATED RATS

By

BANULATA GOPALSAMY

August 2013

Chairman: Associate Professor Shanthi Ganabadi, PhD

Faculty: Veterinary Medicine

Superovulation is an important treatment widely used in transgenic animals and in breeding industry. However, many problems on ovulation, fertilization, embryo recovery and viability rates were encountered when superovulation treatment was carried out. The study was carried out to evaluate the difference in the follicular development and inflammatory mediators of rats in the different phases of the oestrous cycle and to compare the changes that occur in superovulated rats and control rats. Six rats (n=6) from each phase of the oestrous cycle (dioestrus, proestrus, oestrus and metoestrus) were euthanised to observe the inflammatory changes that takes place throughout the cycle. In another experiment, rats were administered exogenous gonadotropin to superovulate and the rats were sacrificed 8 hour post hCG (n=6), 18 hours post hCG (n=6) and control rats (n=6) were euthanised at the oestrus phase of the cycle. Serial histological sections of ovaries were made to
observe the follicle development that occurs within the ovaries and Enzyme linked immunosorbent assay (ELISA) was carried out to analyse the inflammatory mediators in the blood plasma. Data were subjected to statistical analysis using SPSS software version 16.0.

In the experiment to study the normal oestrous cycle, the ovarian weight was highest during the proestrus stage as many large follicles were present at this stage. The number of healthy and unhealthy follicles were relatively unaltered throughout the cycle but the diameters of large follicles increased significantly (P<0.05) from dioestrus to proestrus. Plasma Interleukin 8 (IL-8) and Nerve Growth Factor (NGF) was significantly (P<0.05) increase during proestrus but IL-8 level reduced in the next phases whereas NGF was maintained at a high level until the end of the cycle. Prostaglandin E$_2$ (PGE$_2$) concentration was however consistent throughout the cycle.

In another experiment to study the inflammatory process in superovulated rats, the highest ovarian weight was recorded in 8 hours post hCG group as most of the large follicles were present in those ovaries. The number of healthy large follicles were significantly increased (P<0.05) in superovulated rats (both 8 hours post hCG and 18 hours post hCG groups) compared to control rats but the diameter of the follicles were not significantly different (P>0.05) in superovulated and control rats. The level of IL 8 was significantly increased (P<0.05) in 8 hours post hCG rats but PGE$_2$ and NGF levels were not significantly different (P>0.05) than control rats.

The outcome of this study showed that IL-8 had significantly (P<0.05) higher levels of production during proestrus and in 8 hours post hCG rats compared to control rats.
The other mediator remains the same throughout the cycle and is not different in superovulated rats from control rats. Since only IL-8 was increases in superovulated rats it does not provide enough evidence to conclude if the inflammation level were increased when rats were superovulated. Therefore, further research on other inflammatory markers should be carried out to study the inflammation process that occurs as a result of the superovulatory treatment.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

PERUBAHAN MIKROSKOPIK OVARİ DAN PERKAITANNYA DENGAN PENGANTARA KERADANGAN DALAM PLASMA DARAH DALAM TIKUS NORMAL DAN DISUPEROVULASI

Oleh

BANULATA GOPALSAMY

Ogos 2013

Pengerusi: Professor Madya Shanthi Ganabadi, PhD
Fakulti: Perubatan Veterinar

Superovulasi merupakan satu rawatan yang digunakan secara luas untuk haiwan transgenik dan dalam industri pembiakan. Walaubagaimanapun, banyak masalah dalam pengovulan, persenyawaan, dapat semula embrio dan kadar terus hidup telah dihadapi semasa rawatan superovulasi dilakukan. Kajian ini telah dijalankan bagi menilai perbezaan dalam perkembangan folikel dan perantara keradangan pada tikus dalam setiap fasa dalam kitar ovulasi dan membandingkan perubahan yang berlaku pada tikus yang disuperovulasi dan tikus kawalan.

Enam tikus (n=6) daripada setiap fasa dalam kitar estrus (dioestrus, proestrus, oestrus dan metoestrus) telah dieuthanasia untuk memerhati perubahan keradangan yang berlaku sepanjang kitaran estrus. Dalam eksperimen yang lain, tikus telah diberi gonadotropin eksogenus untuk superovulasi dan tikus tersebut telah dieuthanasia 8
jam selepas hCG (n=6), 18 jam selepas hCG (n=6) dan tikus kawalan (n=6) dibunuh pada fasa estrus dalam kitaran estrus. Potongan histologi bersiri pada ovari telah dilakukan untuk memerhati pembentukan folikel yang berlaku dalam ovari dan ‘Enzyme linked immunosrobent assay (ELISA) telah dijalankan bagi menganalisis pengantara keradangan dalam plasma darah. Data telah di analisis secara statistik dengan menggunakan perisisan SPSS versi 16.0.

Dalam eksperimen untuk mempelajari proses keradangan dalam tikus berkitaran estrus normal, berat ovari adalah tertinggi pada fasa proestrus kerana banyak folikel besar hadir pada fasa tersebut. Bilangan folikel sihat dan tidak sihat tidak menunjukkan perubahan sepanjang kitaran estrus tetapi diameter folikel besar meningkat dengan perubahan ketara (P<0.05) daripada dioestrus kepada proestrus. Plasma Intereleukin 8 (IL-8) dan Faktor Pertumbuhan saraf (NGF) telah meningkat secara ketara (P<0.05) semasa proestrus tetapi paras IL-8 berkurang pada fasa seterusnya sementara NGF dan kekal pada tahap yang tinggi sehingga ke akhir kitar ovulasi. Kepekatan Prostaglandin E₂ (PGE₂) pula konsisten sepanjang kitar oestrus.

Dalam eksperimen untuk mempelajari proses keradangan pada tikus yang disuperovulasi, berat ovari yang tertinggi telah direkodkan dalam kumpulan 8 jam selepas hCG kerana kebanyakan folikel besar hadir pada ovari-ovari tersebut. Bilangan folikel besar yang sihat telah meningkat dengan perubahan ketara (P<0.05) dalam tikus yang telah disuperovulasi (kedua kumpulan 8 jam selepas hCG dan 18 jam selepas hCG) dibandingkan dengan kumpulan kawalan tetapi diameter folikel folikel tersebut tidak mempunyai perubahan ketara (P>0.05) dalam tikus yang disuperovulasi dan tikus kawalan. Paras IL-8 telah meningkat secara ketara (P<0.05)
dalam tikus 8 jam selepas hCG tetapi paras PGE\textsubscript{2} dan NGF tidak berubah secara ketara (P>0.05) daripada tikus kawalan.

Hasil kajian ini menunjukkan bahawa IL-8 mempunyai penghasilan yang ketara (P<0.05) pada proestrus dan dalam tikus 8 jam selepas hCG berbanding tikus kawalan. Perantara-perantara yang lain kekal sepanjang kitar ovulasi dan tidak berbeza dalam tikus yang telah disuperovulasi berbanding tikus kawalan. Oleh kerana hanya IL-8 telah meningkat dalam tikus yang telah disuperovulasi, ia tidak memberi bukti yang mencukupi bagi menyimpulkan samaada paras keradangan telah meningkat bila tikus telah disuperovulasi. Oleh itu, kajian selanjutnya pada penunjuk keradangan yang lain perlu dijalankan bagi mempelajari proses keradangan yang berlaku akibat rawatan superovulasi.
ACKNOWLEDGEMENTS

First, I would like to thank god for giving me the blessings, ability and strength throughout the course of this study.

My utmost gratitude is expressed to my supervisors Associate Professor Dr. Halimatun Yaakub, Associate Professor Dr. Shanthi Ganabadi and Professor Dato’ Dr. Tengku Azmi Tengku Ibrahim for their perfect supervision, wisdom, motivation and guidance in my research.

My special appreciation to my friends, Suraya, Kak Nithiya, Krishnan, Menaga, Kak Aida, Kak Kunna and Kak Hema for their constant help and moral support. Thanks also to those who are not mentioned here.

Sincere thanks also to all my lab mates as well as the staffs of the Faculty of Veterinary Medicine and Department of Animal Science, for their kindness in allowing me to carry out my laboratory work and to use their facilities for this study.

Last but not least, my deepest appreciation to my parents Mr and Mrs Gopalsamy, my sister Gomethy and my relatives who had been my inspiration and strength throughout my three years of research work. Love you all very much.
I certify that a Thesis Examination Committee has met on 26 August 2013 to conduct the final examination of Banulata a/p Gopalsamy on her thesis entitled "Microscopic Changes in Ovaries in Relation to Inflammatory Mediators of Blood Plasma in Normal and Superovulated Rats" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master of Science.

Members of the Thesis Examination Committee were as follows:

Arifah binti Abdul Kadir, PhD
Associate Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Chairman)

Sabrina binti Sukardi, PhD
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Internal Examiner)

Sharida binti Fakurazi, PhD
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Internal Examiner)

Mahanem Mat Noor, PhD
Associate Professor
Universiti Kebangsaan Malaysia
Malaysia
(External Examiner)

[Signature]

NORITAH OMAR, PhD
Associate Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 17 October 2013
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Shanthi Ganabadi, PhD
Associate Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Chairman)

Halimatun Yaakub, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Member)

Tengku Azmi Tengku Ibrahim
Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Member)

BUJANG KIM HUAT, PhD
Professor and Dean
School of graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

Declaration by graduate student

I hereby confirm that:

- this thesis is my original work;
- quotations, illustrations and citations have been duly referenced;
- this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: _______________________ Date: __________________

Name and Matric No.: BANULATA A/P GOPALSAMY (GS26450)
Declaration by Members of Supervisory Committee

This is to confirm that:

- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature: ___________________ Signature: ___________________
Name of Chairman of Supervisory Committee: ___________________
Name of Member of Supervisory Committee: ___________________

Signature: ___________________
Name of Member of Supervisory Committee: ___________________

xiii
TABLE OF CONTENT

DEDICATION ii
ABSTRACT iii
ABSTRAK vi
ACKNOWLEDGEMENTS ix
APPROVAL x
DECLARATION xii
LIST OF TABLES xvi
LIST OF FIGURES xvii
LIST OF ABBREVIATIONS xix

CHAPTER

1 INTRODUCTION 1

2 LITERATURE REVIEW 4
 2.1 Rat as an animal model 4
 2.2 Follicle development in rat’s ovary 5
 2.3 Steroidogenesis in ovulation 6
 2.3.1 Follicle Stimulating Hormone and Luteinizing Hormone 6
 2.3.2 Oestrogen and Progesterone 7
 2.4 The role of an inflammatory process 8
 2.5 Ovulation as an acute inflammatory process 9
 2.6 Interleukin 1 as an inflammatory mediator 11
 2.7 Interleukin 8 as an inflammatory mediator 13
 2.8 Prostaglandin synthesis mechanism and its function 15
 2.9 Nerve Growth Factor 19

3 GROSS OBSERVATION OF OVARIES AND INFLAMMATORY MEDIATORS IN BLOOD PLASMA THOUGHOUT THE OESTRUS CYCLE OF RATS. 22
 3.1 Introduction 22
 3.2 Materials and Methods 24
 3.2.1 Animals 24
 3.2.2 Determination of the different phases of oestrus cycle 24
 3.2.3 Plasma and ovarian tissue sampling 28
 3.2.4 Classification and enumeration of follicles 28
 3.2.5 Determination of blood plasma IL-1β, IL-8 and NGF levels 34
 3.2.6 Determination of blood plasma PGE_2 level 35
 3.2.7 Statistical Data Analysis 35
 3.3 Results and Discussion 37
 3.3.1 The ovarian weight of rats 37
 3.3.2 Follicle enumeration of rats 39
 3.3.3 The follicle size in ovaries of rats 42
 3.3.4 Enumeration of healthy and unhealthy follicles 43

xiv
3.3.5 Blood plasma Interleukin-1β (IL-1β) of rats at different stages of oestrous cycle 45
3.3.6 Blood plasma Interleukin-8 (IL-8) of rats at different stages of oestrous cycle 46
3.3.7 Blood plasma prostaglandin E₂ (PGE₂) of rats at different stages of oestrous cycle 48
3.3.8 Blood plasma Nerve Growth Factor (NGF) of rats at different stages of oestrous cycle 50

3.4 Conclusion 52

4 GROSS OBSERVATION OF OVARIIES AND INFLAMMATORY MEDIATORS IN BLOOD PLASMA OF RATS TREATED FOR SUPEROVULATION

4.1 Introduction 54
4.2 Materials and Methods 56
 4.2.1 Animals 56
 4.2.2 Treatment of superovulation 56
 4.2.3 Plasma and ovarian tissue sampling 57
 4.2.4 Classification and enumeration of follicles 57
 4.2.5 Determination of blood plasma IL-1β, IL-8, PGE₂ and NGF levels 57
 4.2.6 Statistical Data Analysis 57
4.3 Results and Discussion 58
 4.3.1 The ovarian weight of superovulated rats at 8 hours, 18 hours post hCG and control rats 58
 4.3.2 The follicle enumeration of superovulated rats at 8 hours post hCG, 18 hours post hCG and control rats 60
 4.3.3 The follicular size in ovaries of superovulated rats at 8 hours, 18 hours post hCG and control rats 63
 4.3.4 Enumeration of healthy and unhealthy follicles in ovaries of superovulated rats at 8 hours post hCG, 18 hours post hCG and control rats 64
 4.3.5 Blood plasma Interleukin 1β in blood plasma of superovulated rats at 8 hours, 18 hours post hCG and control rats 66
 4.3.6 Blood plasma Interleukin 8 of superovulated rats at 8 hours, 18 hours post hCG and control rats 67
 4.3.7 Blood plasma Prostaglandin E₂ of superovulated rats at 8 hours, 18 hours post hCG and control rats 69
 4.3.8 Blood plasma Nerve Growth Factor in of superovulated rats at 8 hours, 18 hours post hCG and control rats 71

4.4 Conclusion 73

5 GENERAL DISCUSSION, CONCLUSION AND RECOMMENDATION FOR FUTURE RESEARCH

REFERENCES 81
APPENDICES 93
BIODATA OF STUDENT 103
LIST OF PUBLICATIONS 104