

UNIVERSITI PUTRA MALAYSIA

RAT CYTOMEGALOVIRUS GENOME SCAFFOLD AND A033 GENE AS INFECTION MARKER IN RATS

SITI NAZRINA CAMALXAMAN

FPV 2013 13

RAT CYTOMEGALOVIRUS GENOME SCAFFOLD AND A033 GENE AS INFECTION MARKER IN RATS

By

SITI NAZRINA CAMALXAMAN

Thesis submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

May 2013

COPYRIGHT PAGE

All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia

DEDICATIONS

Dedicated with great love and extreme gratitude to

My parents: Camalxaman & Che Nu

> My husband: Adi Suria

My children: Adi Irfan & Adi Reza

My siblings: Nazri, Nazrul, Nazmi & Nastiti

"The love of a family is life's greatest blessing"

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy

RAT CYTOMEGALOVIRUS GENOME SCAFFOLD AND A033 GENE AS INFECTION MARKER IN RATS

By

SITI NAZRINA CAMALXAMAN

May 2013

Chair: Associate Professor Zeenathul Nazariah Allaudin, PhD.

Faculty: Veterinary Medicine

A local preliminary study has documented the prevalence of rat cytomegalovirus (RCMV) in the wild population to be as high as 96%. Hence, periodic screening and surveillance of laboratory rats is vital, since they may also harbor the viral agent, posing challenges for experimental usage. The lack of sequence information in RCMV ALL-03 strain however, has impeded its detection and prevented its assessment in vitro. This thesis describes the reactivation of RCMV ALL-03 from predilected sites, the establishment of rat brain endothelial cells (RBEC) as alternative target cells for viral replication and the identification of cross-reactive viral proteins with human CMV (HCMV). In addition, the draft genome for RCMV ALL-03 was generated using Next Generation Sequencing technology and assembled using CLC Genomics Workbench. This has led to the identification, analysis and primer design for the A033 gene, an infection determinant in RCMV. RCMV ALL-03 was reactivated from the brain, salivary gland and uterus of infected tissues and identified based on morphologic criteria classical of herpesvirus. RBEC primary cells were successfully established and deemed receptive for RCMV ALL-03 with concomitant production of plaques following cytopathogenic studies.

ii

Preliminary serological screening of HCMV in Selangor and Kuala Lumpur revealed 92% endemicity. Protein profiles of RCMV ALL-03 were compared to a local RCMV strain (RCMV UPM/Sg) and RCMV-E (Rat2; ATCC CRL-1764TM) reference strain, revealing eight common protein bands in the range of 44-231 kDa. The detection of a 61-68 kDa cross reactive protein by Western Blot raises the possibility of an immunological cross-reactivity between RCMV and HCMV. The RCMV ALL-03 draft genome was sequenced alongside RCMV-E, generating six contigs for RCMV ALL-03 and 11 contigs for RCMV-E. The sizes of RCMV ALL-03 and RCMV-E draft genome sequences were ~198,895 bp and ~175,071 bp respectively, with a total of 136 genes for RCMV ALL-03 as opposed to 112 genes for RCMV-E. From this, only 46 genes were annotated for RCMV ALL-03 and 43 genes in RCMV-E. This includes the A033 gene, identified as gene 21 (1,173 bp) in RCMV ALL-03 and gene 20 (1,187 bp) in RCMV-E. Specific primer for the A033 gene, a marker for RCMV infection has been proposed, and its specificity validated using PCR against other viral strains. To conclude, this study confirms that RCMV ALL-03 is endotheliotropic, justifying its use as an alternative cell culture system that could be further exploited to study the effects of cellular activation of RCMV in the brain. Furthermore, this study addresses the lack of sequence information in RCMV ALL-03, by reporting the first draft of the genome, providing new genomic data acquisition which has not been disclosed to date. Primers for the A033 gene is being proposed to replace existing ones that were rendered non-specific, paving way towards the establishment of a more accurate and sensitive detection assay to screen for RCMV. Once completed, the genome sequence could be further developed as a recombinant vector for delivering human chimeric or antifertility genes.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

SKAFOLD GENOM SITOMEGALOVIRUS TIKUS DAN GEN A033 SEBAGAI PENANDA JANGKITAN DALAM TIKUS

Oleh

SITI NAZRINA CAMALXAMAN

Mei 2013

Pengerusi: Profesor Madya Zeenathul Nazariah Allaudin, PhD.

Fakulti: Perubatan Veterinar

Laporan saringan sitomegalovirus tikus (RCMV) sebelum ini menunjukkan 96% prevalensi dalam populasi liar. Oleh itu, pemeriksaan dan pengawasan tikus makmal secara berkala adalah penting, kerana virus tersebut boleh juga didapati dalam tikus-tikus ini, menimbulkan cabaran untuk kegunaan eksperimen. Kekurangan jujukan data dalam RCMV ALL-03 banyak menghalang pengesanannya secara in vitro. Tesis ini menerangkan pengaktifan semula RCMV ALL-03 dari kawasan tertentu, pengasingan sel-sel endothelial otak tikus (RBEC) sebagai sel-sel sasaran alternatif untuk replikasi virus dan pengenalpastian protein yang terlibat dalam tindak balas-silang dengan sitomegalovirus manusia (HCMV). Di samping itu, draf genom untuk RCMV ALL-03 telah dijana menggunakan teknologi Next Generation Sequencing dan disusun menggunakan CLC Genomic Workbench. Hasil susunan genom membawa kepada pengenalpastian, analisis dan penghasilan primer bagi gen A033, sejenis penentu jangkitan dalam RCMV. RCMV ALL-03 telah diaktifkan semula dari tisu yang telah dijangkiti iaitu tisu otak, kelenjar air liur dan uterus dan dikenalpasti berdasarkan ciri-ciri morfologi klasik herpesvirus. Sel primer RBEC telah berjaya diasingkan dan didapati sesuai bagi pembiakkan RCMV ALL-03

melalui penghasilan plak sejurus selepas kajian sitopatogenik. Saringan serologi awal HCMV di Selangor dan Kuala Lumpur menunjukkan 92% endemisiti. Perbandingan profil protein RCMV ALL-03 dengan strain tempatan (RCMV UPM/Sg) dan strain rujukan RCMV-E (Rat2; ATCC CRL-1764TM) menunjukkan lapan jalur protein yang sama dalam julat 44-231 kDa. Pengenalpastian protein yang terlibat dalam tindak balas-silang RCMV dan HCMV telah dilaksanakan melalui pengesanan protein reaktif bersaiz 61-68 kDa menggunakan kaedah Western Blot. Genom RCMV ALL-03 telah disusun bersama strain RCMV-E menghasilkan enam contigs untuk RCMV ALL-03 dan 11 contigs untuk RCMV-E. Saiz pencirian jujukan genom RCMV ALL-03 dan RCMV-E separa adalah masing-masing ~198,895 bp dan ~175,071 bp, dengan jumlah 136 gen untuk RCMV ALL-03 berbanding 112 gen untuk RCMV-E. Dari jumlah ini, hanya 46 gen beranotasi untuk RCMV ALL-03 dan 43 gen untuk RCMV-E. Ini termasuk gen A033, yang telah dikenalpasti sebagai gen 21 (1,173 bp) dalam RCMV ALL-03 dan gen 20 (1187 bp) dalam RCMV-E. Primer khusus untuk gen A033, telah direka dan spesifikasinya disahkan dengan kaedah PCR menggunakan strain virus yang berlainan. Kesimpulannya, kajian ini mengesahkan bahawa RCMV ALL-03 adalah endoteliotropik. Penemuan ini menunjukkan kewajaran penggunaan RBEC sebagai sistem kultur sel alternatif yang berpotensi untuk kajian kesan pengaktifan selular RCMV dalam otak. Tambahan pula, kajian ini menangani kekurangan maklumat jujukan dalam RCMV ALL-03, dengan melaporkan draf pertama genom, secara langsung menghasilkan data baru genomik yang belum pernah didedahkan sehingga hari ini. Primer khusus untuk gen A033 dijangka dapat digunakan untuk menghasilkan asai pengesanan untuk RCMV. Setelah selesai, jujukan genom seterusnya boleh dijadikan sebagai vektor rekombinan untuk menyampaikan gen kimera manusia atau gen antifertiliti.

v

ACKNOWLEDGEMENTS

In the name of Allah, the Most Gracious and the Most Merciful.

Syukur Alhamdulillah, all praises to Allah, for granting me the strength, courage and blessings to conclude the writing of my thesis. I would not have accomplished this without the help and support from so many people. Firstly, I must acknowledge my sincere gratitude to my supervisor Assoc. Prof. Dr. Zeenathul Nazariah Allaudin. *Thank you* for your guidance, supervision and assistance throughout these years. I have learnt a great deal from you and for that I am forever indebted. My sincere appreciation also goes to my co-supervisors: Assoc. Prof. Dr. Zuridah (my dearest mentor), Assoc. Prof. Dr. Sandy Loh Hwei San, and Prof. Dato' Dr. Sheikh Omar for all your constructive suggestions, valuable guidance and fruitful discussions that have aided my study.

To Yi Wan, you are the best partner one could ever have. *Thank you* for dividing the task and multiplying the success. To the rest of Dr Zeenat's group members: Noraini, Hidayah, Morvarid, Homayoun, Ruzila, Tan, Nik, Lo, Tam, Caryn, Parisa, Faezah, Fatemah, Noushin and Tarlan, *thank you* for making my challenges less challenging, and my problems less problematic. To Iffah, Fahmi, En. Din, En. Nazri, and Miza, *thank you* for sharing your technical expertise and for teaching me from scratch. To my best friend Dr. Amer and virology lab mates Dr. Mayada, Dr. Saeed, Dr. Faruku, Dr. Rohaya, Afzal and Dr. Majed, *thank you* for the warmth of your friendship. *Thank you* to UiTM and MOHE for granting me the scholarship and the opportunity to pursue my dreams in becoming a better educator. To my colleagues: En. Zed, Ann Erynna, Dr. Emida, Hisham, Nisa, Hadi, Dr. Maimunah, Dr. Mazlina, Dr. Jack, Pn. Azlin, Hartini, Dr. Mazura, Dr. Izham, Dr. Roslinah and Tn Hj Nazri *thank you* for the uncountable support and motivation during the hard and stressful moments.

To my beloved parents Camalxaman Md Nor & Che Nu Hashim: *thank you* for helping me in all ways imaginable, for praying for me day and night, and for taking care of the kids while I was busy taking care of my virus. I am truly blessed. To my parents-in-law Jamaludin Mohamad & Zaini Badiuzzaman, siblings Nazri, Nazrul Nazmi & Nastiti and extended family, Mazuin, Iya, Elia, Aca, Ainur, Ayu, Sarah and Wonder, *thank you* for your love and support. To my soul mate Adi Suria, *thank you* for being with me throughout this roller-coaster ride and for being my pillar of strength during my most difficult times. Without you, I would have crumbled and I'm certain this work would have never occurred. To Irfan & Reza, you are both the reasons why I kept on going and never gave up. I apologize for spending more time in the lab than I did at home, but I promise to catch up on lost time. I hope that my struggles will inspire you both to reach your fullest potential and to fight for your dreams.

Last but not least, *thank you* to the members of my Thesis Examination Committee who took their time to go through, deliberate and examine my thesis. At last, my hard work, perseverance and tenacity paid off, and for that I thank Allah. I certify that a Thesis Examination Committee has met on 10 May 2013 to conduct the final examination of Siti Nazrina Camalxaman on her thesis entitled "Rat Cytomegalovirus Genome Scaffold and A033 Gene as Infection Marker in Rats" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

Noordin Mohamed Mustapha, PhD

Professor Faculty of Veterinary Medicine Universiti Putra Malaysia (Chairman)

Hassan Hj. Mohd. Daud, PhD

Associate Professor Faculty of Veterinary Medicine Universiti Putra Malaysia (Internal Examiner)

Abdul Rahman Omar, PhD

Professor Faculty of Veterinary Medicine Universiti Putra Malaysia (Internal Examiner)

Jimmy Kwang, PhD

Professor National University of Singapore Singapore (External examiner)

NORITAH OMAR, PhD Assoc. Professor and Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date: 2 August 2013

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Doctor of Philosphy. The members of the Supervisory Committee were as follows:

Zeenathul Nazariah Allaudin, PhD

Associate Professor Faculty of Veterinary Medicine Universiti Putra Malaysia (Chairman)

Dato' Sheikh Omar Abdul Rahman, PhD

Professor Faculty of Veterinary Medicine Universiti Putra Malaysia (Member)

Loh Hwei San, PhD

Associate Professor Faculty of Sciences The University of Nottingham Malaysia Campus (Member)

Zuridah Hassan, PhD

Associate Professor Faculty of Health Sciences Universiti Teknologi MARA (Member)

BUJANG BIN KIM HUAT, PhD

Professor and Dean School of Graduate Studies Universiti Putra Malaysia

Date:

DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently submitted for any other degree at Universiti Putra Malaysia or at any other institutions.

TABLE OF CONTENTS

						Page
ABSTRA	СТ					ii
ABSTRA	K					iv
ACKNOV	WLED	GEMEN	TS			vi
APPROV	AL					viii
DECLAR	ATIO	N				X
LIST OF	TABL	ES				xvi
LIST OF	FIGUE	RES	ONG			XV111
LISI OF	ABBK	EVIAII	UNS			XX1
СНАРТЕ	R					
1	INT	RODU	TION			1
2	LIT	ERATU	RE REVIEW			
	2.1	Genera	l Information			5
		2.1.1	Herpesvirus Ov	verview		5
		2.1.2	Cytomegalovir	uses (CMV)		6
		2.1.3	Genome Organ	ization		6
		2.1.4	CMV Structure	2		9
			2.1.4.1 Viral	l Genome		9
			2.1.4.2 Nucl	eocapsid		10
			2.1.4.3 Tegu	iment		10
			2.1.4.4 Enve	elope and Glycopro	teins	11
		2.1.5	CMV Replicati	ion Cycle		12
			2.1.5.1 Entry	y and Pre-replication	on Events	13
			2.1.5.2 DNA Expr	Replication ression	and Ger	ie 13
			2.1.5.3 Asse	mbly and Egress		15
	2.2	Human	Cytomegaloviru	us (HCMV)		17
		2.2.1	Brief History			17
		2.2.2	Clinical Infecti	on		18
		2.2.3	Transmission a	ind Spread		20
		2.2.4	Latency and Re	eactivation		20
		2.2.5	Cellular Tropis	m		23
		2.2.6	Laboratory Dia	ignosis		25
	• •	2.2.7	Treatment of Ir	ifections		26
	2.3	Anima	Models for HC	MV		28
		2.3.1	Rat Cytomegal	ovirus (RCMV)		29
	a 4	2.3.2	K33 and G Pro	tein Coupled Rece	ptors	31
	2.4	Sequer	cing Technologi	les	C)	32
		2.4.1	Next Generatio	n Sequencing (NG	5)	33
		2.4.2	Illumina Seque	ncing Technology	Data	<i>3</i> 6
	25	2.4.3 D	Genome Inform	natics of the NGS I	Data	39
	2.5	Progre	s of CMV Vacc	ine Development		41

xi

REC	COVERY	Y AND REACTIVATION OF RCMV ALL-03					
FRO)M INFI	ECTED RAT					
3.1	Introdu	ction	46				
3.2	Materia	erials and Methods					
	3.2.1	Cell Culture Preparation	49				
	3.2.2	Subculture of Confluent REF Cells	49				
	3.2.3	Virus Reactivation from Infected Tissues	50				
	3.2.4	Mycoplasma Screening	51				
	3.2.5	Propagation of Virus	51				
	3.2.6	Harvesting of Virus	52				
	3.2.7	Concentration of Virus	52				
	3.2.8	Purification of Virus	52				
	3.2.9	Titration of Virus by TCID ₅₀	53				
	3.2.10	Host Range Specificity Studies	54				
	3.2.11	Negative Contrast Electron Microscopy (NCEM)	55				
3.3	Results		56				
	3.3.1	Mycoplasma Screening	56				
	3.3.2	Virus Recovery from Infected Rat Tissues	56				
	3.3.3	Virus Purification	58				
	3.3.4	Titration of Virus by TCID ₅₀	59				
	3.3.5	Host Range Specificity Studies	59				
	3.3.6	NCEM	60				
3.4	Discuss	sion	62				
3.5	Conclus	sions	64				

4

3

ESTABLISHMENT AND INFECTIVIY STUDIES OF **RCMV ALL-03 IN RAT BRAIN ENDOTHELIAL CELLS** (RBEC)

(==)		
4.1	Introdu	iction	65
4.2	Materia	als and Methods	67
	4.2.1	Coating of Cell Culture Surfaces	67
	4.2.2	Sample Collection	67
	4.2.3	Tissue Digestion	68
	4.2.4	Purification of RBEC	69
	4.2.5	Subcultivation of RBEC	71
	4.2.6	Cryopreservation of RBEC	71
	Viability Assessment of RBEC	72	
	4.2.8	Characterization of RBEC	73
		4.2.8.1 Immunodetection of RBEC Markers	73
		4.2.8.2 Polyacrylamide Gel Electrophoresis	73
		(PAGE)	
		4.2.8.3 Scanning Electron Microscopy (SEM)	74
	4.2.9	RCMV ALL-03 Infectivity Studies	75
		4.2.9.1 Cytopathogenicity Studies	75
		4.2.9.2 Virus Growth Curve	75
		4.2.9.3 Haematoxylin and Eosin (H&E)	76
		Staining	

			4.2.9.4	Transmission	Electron	Microscopy	77
				(TEM)			
4.	.3	Results					79
		4.3.1	Brain Tis	ssue Explants			79
		4.3.2	RBEC C	ulture			80
		4.3.3	Viability	Assessment			82
		4.3.4	Immuno	detection of RBI	EC Markers		82
		4.3.5	SDS-PA	GE			84
		4.3.6	SEM				85
		4.3.7	Cytopath	ogenicity studie	S		86
		4.3.8	Virus Gr	owth Curve			88
		4.3.9	H&E Sta	ining			89
		4.3.10	TEM	-			91
4.	.4	Discuss	ion				92
4.	.5	Conclus	sions				96

HCMV SEROPREVALENCE IN MALAYSIA AND ITS CROSS-REACTIVITY WITH RCMV ALL-03

5

5.1	Introdu	ction		97
5.2	Materia	ls and Me	ethods	100
	5.2.1	Sample I	Population	100
	5.2.2	Serologi	cal Screening of HCMV	100
	5.2.3	Type of	Viruses	101
	5.2.4	SDS-PA	GE	102
		5.2.4.1	Gel Components	102
		5.2.4.2	Protein Quantification	103
		5.2.4.3	Electrophoresis	103
		5.2.4.4	Gel Staining	104
	5.2.5	Western	Blot	104
		5.2.5.1	Protein Transfer to PVDF Membranes	104
		5.2.5.2	Immunodetection of Blotted Proteins	106
	5.2.6	Indirect	Immunoperoxidase (IIP)	106
5.3	Results			108
	5.3.1	ELISA		108
	5.3.2	SDS-PA	GE	109
	5.3.3	Western	Blot	112
	5.3.4	IIP		112
5.4	Discuss	sion		114
5.5	Conclus	sions		117

GEI	NOME	INFORMATICS OF RCMV ALL-03	
AN	D ANAL	YSIS OF THE A033 GENE	
6.1	Introdu	ction	118
6.2	Materia	ls and Methods	121
	6.2.1	Cells and Virus Culture	121
	6.2.2	Preparation of Genomic DNA	121
	6.2.3	Determination of DNA Concentration and Purity	122
	6.2.4	Agarose Gel Electrophoresis and Staining	122
	6.2.5	Whole Genome Sequencing using NGS Illumina	123
		Technology	
	6.2.6	NGS Analysis using CLC Genomics Workbench	124
		6.2.6.1 Importing of Raw Data and Trimming Reads	124
		6.2.6.2 <i>De novo</i> Assembly	125
		6.2.6.3 Reference Mapping	125
	6.2.7	RCMV ALL-03 Draft Genome Analysis	128
		6.2.7.1 Alignment of Contigs and Scaffolding	130
		6.2.7.2 CMV Genome Comparison	130
		6.2.7.3 Phylogenomics of CMV	131
		6.2.7.4 Gene Prediction	131
		6.2.7.5 Functional Gene Analysis	132
		6.2.7.6 Annotation of the Draft Genome	132
	6.2.8	A033 Gene Analysis	133
	6.2.9	A033 Primer Design	133
	6.2.10	A033 Primer Validation	134
		6.2.10.1 In silico PCR	134
		6.2.10.2 MFEprimer	134
		6.2.10.3 SPCR	135
		6.2.10.4 PCR	135
6.3	Results		137
	6.3.1	Genomic DNA Extraction	137
	6.3.2	DNA Concentration and Purity	137
	6.3.3	Sequencing Data	137
	6.3.4	De novo Assembly	138
	6.3.5	Reference Mapping	140
	6.3.6	Alignment of Contigs and Scaffolds	142
	6.3.7	CMV Genome Comparisons	144
	6.3.8	Phylogenomics	144
	6.3.9	Genome Annotation and Gene Prediction	147
	6.3.10	Gene Function Analysis	160
	6.3.11	A033 Gene Analysis	162
	6.3.12	A033 Primer Design	168
	6.3.13	A033 Primer Validation	171
6.4	Discuss	ion	172
6.5	Conclus	sions	179

6

G

7 0	ENERAL DISCUSSION,	CONCLUSIONS	AND
R	RECOMMENDATIONS FOR I	TUTURE RESEARC	H
7	.1 General Discussion		180
7	.2 Conclusions		186
7	.3 Recommendations for Future	e Research	187
REFERENCI	ES		188
APPENDICE	S		
Appendix A :	Media and Related Tissue Cultu	re Solutions	214
Appendix B :	TCID ₅₀ Calculation		217
Appendix C :	Primary Cell Culture Media and	l Related Buffers	218
Appendix D :	SEM and TEM Related Buffers	and Solutions	220
Appendix E :	H& E Staining Solutions		222
Appendix F :	Supporting Evidence for RBEC	SDS-PAGE	223
Appendix G :	SDS-PAGE, Western Blot Buff	ers and Solutions	224
Appendix H :	Standard Curve, ELISA and evi	idence for SDS-PAGE	228
Appendix I:	Genome Informatics Analysis		232
Appendix J :	Sequences of Annotated Genes	in RCMV ALL-03	241
BIODATA O	F STUDENT		275
LIST OF PUI	BLICATIONS		276