UNIVERSITI PUTRA MALAYSIA

IMPROVING LEACHING EFFICIENCY OF SALINE SOILS USING WATER MANAGEMENT TECHNIQUES

ABDUL GHAFOOR SIYAL

FK 2011 118
IMPROVING LEACHING EFFICIENCY OF SALINE SOILS USING WATER MANAGEMENT TECHNIQUES

By

ABDUL GHAFOOR SIYAL

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirements for the Degree of Doctor of Philosophy

June 2011
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the degree of Doctor of Philosophy

IMPROVING LEACHING EFFICIENCY OF SALINE SOILS USING WATER MANAGEMENT TECHNIQUES

By

ABDUL GHAFOOR SIYAL

June 2011

Chair: Prof Ir. Desa. Ahmad, PhD

Faculty: Faculty of Engineering

Saline soils in arid regions of the world are normally reclaimed by continuous ponding method of the salt leaching. This method wastes large quantities of good quality water that otherwise may be used for irrigation of crops. In water stress region, water use efficient leaching methods are desperately needed. Therefore the salt leaching efficiency of different desalinization methods viz. partial, continuous and intermittent ponding were investigated for medium to fine soil textures i.e. sandy loam, loam, silt loam and clay soil under initially saturated conditions in the laboratory using sand tank model. Experiments of salt leaching from loamy soil with continuous and intermittent ponding under initially unsaturated conditions were also conducted.

Computer simulations of salt leaching with continuous and partial ponding scenarios under initially saturated and unsaturated conditions were also carried out with model HYDRUS-2D. Based on literature, a hypothesis that salt leaches quicker when a soil
is initially unsaturated was tested through a field experiment conducted on saline loamy soil. For uniform drying of the entire soil root zone, wheat plants were grown in plots based on random approach. Soil moisture content of these plots was compared to plots with only tillage and plots without tillage and wheat plants. Also, salt leaching from these plots was carried out using continuous and intermittent ponding so as to verify the hypothesis.

Laboratory study results revealed that up to 95% and 25% water was saved when partial and intermittent ponding methods were used to desaline different soil textures compared to continuous ponding. Partial ponding also consumed 89% and 92% less time compared to full and intermittent ponding methods, respectively.

Time taken to leach out 80% salts from loamy soil under initially saturated and unsaturated conditions with different leaching scenarios, show that with full ponding 10.9% less time was taken during leaching under initially unsaturated conditions compared to that of initially saturated conditions. Similarly time savings of 11.0% and 9.6% were obtained under initially unsaturated conditions compared to that of initially saturated conditions, when partial and intermittent ponding methods, respectively, were used for leaching.

For initially saturated soil conditions, salt leaching with partial ponding consumed about 95% less water and 90% less time taken to leachout 80% salts from tank compared to full and intermittent ponding respectively under laboratory conditions. Thus, partial ponding proved not only water use efficient method but also time saving method.
Extrapolation of the partial ponding technique for initially unsaturated soil conditions caused extra 8.1% and 11% water and time savings respectively compared to that used with under initially saturated soil conditions.

Computer simulations of salt leaching with HYDRUS-2D revealed that partial ponding method of leaching is a time efficient method of leaching which can save 90.6%, 90.7%, 89.5% and 88.5% time savings compared to continuous leaching for sandy loam, loam, silt loam and clay soil textures respectively.

Field experiments results showed that plants are capable of drying root zone, plants extracted water from the entire profile significantly which resulted in approximately uniform moisture content in the soil profile. For both leaching methods salts were leached more from upper layer (0-20 cm) compared with lower soil layer (60-80 cm) because the EC$_w$ of water increases as the water percolates down to lower layers which results in decrease in concentration gradient between EC$_e$ and EC$_w$ and salts were leached more from plots with plants (T$_3$) followed by plots with tillage (T$_2$) and plots without tillage and plants (T$_1$). Tillage expedites the leaching process but when the soil profile is unsaturated it enhances leaching capability even more. Intermittent ponding method of salt leaching found more efficient compared to that of continuous ponding method of leaching, however, intermittent method took 60 days whereas continuous method took 40 days to complete the leaching process.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah.

MENINGKATKAN KECEKAPAN LARUTLESAP TANAH MASIN MENGGUNAKAN TEKNIK PENGURUSAN AIR

oleh

ABDUL GHAFOOR SIYAL

Jun 2011

Pengerusi: Prof Ir. Desa. Ahmad, PhD

Fakulti: Kejuruterana

Tanah masin di rantau gersang dunia biasanya ditebusguna dengan menakung air berterusan untuk melarutlesap garam. Kaedah ini banyak membazirkan air berkualiti baik yang sepatutnya dimanfaatkan untuk pengairan tanaman. Di rantau yang mengalami stres air, kaedah melarutlesap garam menggunakan air dengan cekap amatlah diperlukan. Oleh yang demikian beberapa kaedah nyahgaram yang cekap seperti kaedah genangan separa, berterusan, dan berkala telah dikaji menggunakan model tangki di makmal untuk tanah bertekstur sederhana hingga tekstur halus, iaitu lom berpasir, lom, lom berkelodak dan tanah liat dengan berkeadaan tepu pada permulaannya. Ujikaji larutlesap garam untuk tanah lom tak tepu pada asalnya dengan genangan air berterusan dan berkala juga telah dijalankan.

Simulasi komputer sinario larutlesap garam dengan genangan air berterusan dan separa dalam keadaan tepu dan tak tepu pada awalnya telah dijalankan menggunakan Model HYDRUS-2D. Berpandukan bahan literatur, satu hipotesis yang menyatakan garam akan...
larutlesap dengan lebih cepat sekiranya keadaan awalnya adalah tak tepu telah diuji di tapak kajian di lapangan dengan tanah masin jenis lom. Untuk pengeringan seragam keseluruhan zon akar, pokok gandum telah ditanam dalam plot secara rawak. Kandungan lembapan tanah di plot telah dibandingkan dengan plot yang dibajak sahaja tanpa tanaman, dan plot tanpa dibajak tetapi ditanam gandum. Larutlesap garam dari plot secara genangan air berterusan dan secara genangan berkala telah jalankan untuk mengesahkan hipotesis tersebut.

Kajian di makmal menunjukkan penjimatan air dapat dicapai sehingga 95% bagi genangan separa dan 25% bagi genangan berkala dibandingkan dengan genangan berterusan untuk menyahkan garam dari pelbagai jenis tekstur tanah. Genangan separa juga dapat mengurangkan masa sebanyak 89% berbanding dengan genangan penuh dan 92% bagi genangan berkala.

Masa diambil untuk melarutlesap 80% garam dari tanah lom dengan keadaan tepu dan tak tepu diawalnya dengan sinario larutlesap yang berbeza menunjukkan dengan genangan penuh, penjimatan masa sebanyak 10.9% diperolehi semasa proses larutlesap jika keadaan awal tak tepu berbanding dengan keadaan tepu. Penjimatan masa sebanyak 11% bagi kaedah genangan separa dan 9.6% bagi genangan berkala diperolehi dalam keadaan tak tepu berbanding dengan keadaan awal yang tepu dalam melarutlesap nyahgaram.

Untuk ujikaji keadaan tanah tepu di makmal, larutlesap garam dengan genangan separa menjimatkan air sekitar 95% untuk melarutlesap 80% garam dari tangki berbanding dengan genangan air berterusan, dan penjimatan 90% air untuk genangan berkala. Oleh
itu, genangan separa telah membuktikan bukan sahaja ianya kaedah penggunaan air yang cekap bahkan juga menjimatkan masa.

Ekstrapolasi teknik genangan separa untuk keadaan tanah yang asalnya tak tepu menyebabkan tambahan air sebanyak 8.1% dan tambahan masa sebanyak 11% berbanding dengan keadaan tanah yang asalnya tepu.

Simulasi computer larutlesap garam dengan HYDRUS-2D menunjukkan yang genangan separa adalah cekap dalam penggunaan masa dan dapat menjimatkan masa berbanding dengan genangan berterusan sebanyak 90.6%, 90.7%, 89.5% and 88.5%, masing-masing bagi lom berpasir, lom, lom bekelodak dan tanah liat.

Hasil ujikaji di lapangan menunjukkan tanaman dapat mengeringkan zon akar, mengambil air dari profil tanah dengan signifikan menghasilkan kandungan lembapan seragam di profil tanah. Untuk kedua-dua kaedah larutlesap, garam dilarutlesap dengan lebih banyak dari lapisan atas (0-20 cm) berbanding lapisan bawah (60-80 cm) kerana ECw air meningkat apabila air turun ke bawah menjadikan pengurangan gradien kepekatan ECe dan ECw. Garam dilarutlesap dengan lebih banyak dari plot yang ada tanaman (T3) diikuti oleh plot dibajak tanpa tanaman (T2) dan plot tanpa dibajak tapi ada tanaman (T1). Bajakan menpercepatkan proses larutlesap tetapi jika profil tanah berkeadaan tak tepu, larutlesap akan menjadi lebih baik. Kaedah genangan berkala untuk melarutlesap garam didapat lebih cekap berbanding dengan kaedah genangan berterusan; walau bagaimanapun kaedah genangan berkala mengambil masa 60 hari berbanding dengan 40 hari bagi genangan berterusan.
ACKNOWLEDGEMENTS

Author bows before Almighty Allah and expresses his humblest and sincerest words of gratitude to Him, Who bestowed upon the feeble author the potential and ability to make material contribution to the already existing ocean of knowledge.

The author wishes to express his first and foremost heart-felt thanks and respects to his honorable research supervisor for this thesis, Prof Ir. Dr. Desa Ahmad, Department of Biological and Agricultural Engineering, Faculty of Engineering Universiti Putra Malaysia for his cooperation, guidance, constructive criticism and encouragement during the entire research work. As a matter of fact, without such help and guidance, it would have been difficult for the author to accomplish this task. Special thanks are offered to Prof Ir. Dr. Amin Mohd. Soom Department of Biological and Agricultural Engineering and Prof Dr. Thamer Ahmed, Department of Civil Engineering, Faculty of Engineering Universiti Putra Malaysia for their guidance, encouragement and help during research and valuable advices in the development of the thesis manuscript. Last but not least, I am thankful to Prof Dr. Altaf Ali. , Department of Land and Water Management, Faculty of Agricultural Engineering, Sindh Agriculture University, Tandojam, Pakistan for his valuable suggestions and guidance during the course of the study.

ABDUL GHAFOOR SIYAL
I certify that an Examination Committee has met on 30 June, 2011 to conduct the final examination of Abdul Ghafoor Siyal on his thesis entitled “Improving leaching efficiency of saline soils through water management techniques” in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Degree of Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

Lee Teang Shui, PhD
Professor, Ir
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Abdul Haleem Ghazali, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
/Internal Examiner

Che Fauziah bt Ishak, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
/Internal Examiner

Rod Smith, PhD
Y. Bhg. Professor
Faculty of Engineering and Surveying
University of Southern Queensland, Australia.
(External Examiner)

NORITAH OMAR, PhD
Associate Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Desa. B. Ahmad, PhD, Ir.
Professor
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Amin Mohd. Soom, PhD, Ir.
Professor
Faculty of Engineering
Universiti Putra Malaysia
(Member)

Thamer Ahmed, PhD
Professor
Faculty of Engineering
Universiti Putra Malaysia
(Member)

Altaf Ali, PhD
Professor
Faculty of Agricultural Engineering
Sindh Agricultural University, Tandojam
Pakistan
(External Member)

HASANAH MOHD GHAZALI, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not currently, submitted for any other degree at Universiti Putra Malaysia or any other institution.

ABDUL GHAFOOR SIYAL

Date: 30 June 2011
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>v</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>viii</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>ix</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xviii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxi</td>
</tr>
</tbody>
</table>

CHAPTER

1 **INTRODUCTION**
1.1 General
1.2 Causes of Soil Salinity
1.3 Problem Statement
1.4 Objectives
1.5 Scope of study

2 **LITERATURE REVIEW**
2.1 Causes and Intensity of Soil Salinity Problem
2.2 Leaching of Saline Soils
2.3 Leaching of Saline Soils
2.4 Leaching for Maintenance of Steady-State Soil Salinity
2.5 Leaching for Reclamation of Saline Soils
2.6 Simulation of Leaching Process, using Hydrus-2D

3 **MATERIALS AND METHODS**
3.1 Laboratory Experiments
3.1.1 Sand tank
3.1.2 Experimental detail
3.1.3 Soil properties and packing
3.1.4 Sand Tank Leaching experiments
3.1.5 Flow Path Tracing Experiments
3.2 Computer Simulations
3.2.1 Hydrus-2D/3D
3.2.2 Governing flow and transport equations
3.2.3 Flow domain
3.2.4 Initial and boundary conditions
3.2.5 Soil hydraulic and solute transport parameters
3.2.6 Time of ponding during partial ponding
3.3 Field Experiment
3.3.1 Location
3.3.2 Experimental Design

xii
3.3.3 Preparation of plots
3.3.4 Soil sampling
3.3.5 Salt tolerant crop
3.3.6 Preparation of land for experiment
3.3.7 Irrigation of plots
3.3.8 Harvesting of crop
3.3.9 Leaching of salts
3.3.10 Soil Sampling

4 RESULTS AND DISCUSSION

4.1 Salt Leaching Laboratory Experiments Under Initially Saturated Conditions
4.1.1 Stream lines
4.1.2 Velocity of stream lines
4.1.3 Drain flux density and drain flow
4.1.4 Total Water Used
4.1.5 Time of Leaching
4.2 Computer Simulations
4.2.1 Velocity Vectors
4.2.2 Fractions of Leachate
4.2.3 Salts Leached
4.2.4 Time of Leaching
4.3 Salt Leaching Laboratory Experiments Under Initially Unsaturated Conditions
4.3.1 Laboratory Experiments
4.3.2 Computer Simulations
4.4 Field Experiment
4.4.1 Soil Physical Properties
4.4.2 Soil Chemical Properties
4.4.3 After Leaching
4.5 Interpretation of Results, Discussion and Comparison with Previous Studies.
4.6 Practical Implementation of Leaching Processes

5 SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

5.1 Laboratory experiments
5.2 Computer Simulations
5.3 Field Experiment
5.4 Conclusions
5.5 Recommendations

REFERENCES

APPENDICE

BIODATA OF STUDENT