UNIVERSITI PUTRA MALAYSIA

DEVELOPMENT OF A LOW COST MICROWAVE-TYPE RICE YIELD MONITOR WITH WIRELESS DATA COMMUNICATION FOR RICE COMBINE HARVESTER

OH YUN JU

FK 2011 115
DEVELOPMENT OF A LOW COST MICROWAVE-TYPE RICE YIELD MONITOR WITH WIRELESS DATA COMMUNICATION FOR RICE COMBINE HARVESTER

By

OH YUN JU

Thesis submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirements for the Degree of Master of Science

August 2011
DEDICATED TO

My family
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the Degree of Master of Science

DEVELOPMENT OF A LOW COST MICROWAVE-TYPE RICE YIELD MONITOR WITH WIRELESS DATA COMMUNICATION FOR RICE COMBINE HARVESTER

By

OH YUN JU

August 2011

Chairman : Assoc. Prof. Ir. Azmi Dato’ Yahya, PhD
Faculty : Engineering

This study was carried out to develop a simple, portable, and rugged microwave-type yield monitoring system that could be directly used onto a conventional grain type combine harvester to monitor and record in real-time harvested rice yield. Crop yield monitor and grain moisture content by the impact-type flow sensor and capacitance-type sensor on the combine harvesters had been widely reported to be low in accuracies by previous researchers. This newly developed instrumentation system consists of a National Instrument CompactRio 9004 embedded system with NI 9221 I/O module, a National Instrument 2016 touch panel component (TPC), a Trimble AgGPS 132 DGPS, a D-link 655 with 3 D-link ANT24-0700 antennas, and a Panasonic CF-19 toughbook with D-link DWA-140 USB adapter, and related measurement sensors. Ultrasonic displacement sensors, electromagnetic rotation detector, microwave solid flow sensor and microwave moisture sensor were respectively used for measuring the combine cutting width, combine rotational elevator speed grain flow and grain moisture content going into the combine tank during the harvesting operation. Laboratory Virtual Instrument Engineering Workbench (LabVIEW) 8.6 software was programed to process and display the
measured signals from the available sensors in the embedded system on-board the combine harvester and consequently display and store the transmitted signals from embedded system in the toughbook at the ground work station. Laboratory calibrations on the respective sensors showed good measurements linearity having correlation coefficients closed to 1.000. Field wireless transmission check-up between the embedded system and the toughbook showed excellent communications without data losses to a maximum distance of 140 m. Field demonstration tests on the developed yield monitoring system on-board the Clayson 1545 New Holland combine harvester in actual field harvesting operations on two rice plots for two crop growing seasons showed that the system could measure, display and record successfully the intended crop and combine performance parameters. Finally, these recorded data in the toughbook could download successfully at the laboratory and consequently utilised by ArcGis 9.2 software to generate maps of combine tracking, combine cutting width, combine elevator rotational speed, combine travel speed, instantaneous crop yield, combine field capacity, and grain moisture.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

PEMBANGUNAN SISTEM KOS MURAH PENGAWAS PADI HASIL JENIS GELOMBANG MIKRO DENGAN KOMUNIKASI WAYARLES UNTUK JENTUAI PADI PENUAI

Oleh

OH YUN JU

Ogos 2011

Pengerusi : Professor Madya. Ir. Azmi Dato’ Yahya, PhD

Fakulti : Kejuruteraan

telah diprogramkan untuk memproses dan memapar isyarat-isyarat dari penderia-penderia yang terdapat dalam sistem terbenam di atas jentuai dan seterusnya memapar and menyimpan isyarat-isyarat yang dihantar oleh sistem terbenam pada toughbook yang terletak di bumi. Penentukuran makmal ke atas penderia-penderia yang terbabit menunjukkan kelelurusan pengukuran yang baik degan pekali-pekali sekaitan yang hampir nilai 1.000. Pemeriksaan lapangan ke atas penghantaran wayarles antara sistem terbenam dengan toughbook menunjukkan kemampuan komunikasi yang cemerlang tanpa kehilangan data sehingga ke jarak maksima 140 m. Ujian demonstrasi lapangan ke atas sistem pengawasan hasil yang telah dipasangkan pada jentuai Clayson 1545 New Holland pada operasi penuaian di ladang di dua lot padi pada dua musim penanaman padi menunjukkan sistem tersebut berjaya dapat mengukur, memapar dan merekod pembolehubah tanaman dan prestasi jentuai. Akhir sekali, data-data yang telah direkodkan di dalam toughbook itu dapat di turun-naik di makmal and seterusnya digunapakai oleh perisian ArcGis 9.2 untuk menghasilkan peta pegerakan jentuai, peta lebar pemotong jentuai, peta laju putaran penaij jentuai, peta laju pergerakan jentuai, peta hasil tanaman ketika, peta muatan ladang jentuai, dan peta kelembapan bijian.
ACKNOWLEDGEMENTS

First and foremost, the author is very grateful to her supervisor, Assoc. Prof. Ir. Dr. Azmi Dato’ Yahya, for his valuable comments, patience, guidance, and strong support for the very enriching and though-provoking discussions which helped to shape the thesis. He was always there to help whenever needed throughout the project. Next, the author would also like to thank the other members in her supervisory committee; Dr Maryam bt. Mohd. Isa and Dr. Samsuzana bt. Abdul Aziz for the kindly contributions, feedback, and comment during the running of my project.

The author realizes that the study could not be completed successfully without the valuable assistances from the staff of the Department of Biological and Agricultural Engineering, Faculty of Engineering, UPM. Special thanks are addressed to all staff of the Department of Biological and Agricultural Engineering, UPM especially Mr. Mohd. Rosdhi Zamri, and Mr. Abdul Hamed whose assistance have contributed in the completion of this study. Special appreciations are extended to the colleagues of Darius, Tajudeen and Firdza in the Machine Design Laboratory and Dr. Aimrun Wayayok from the Smart Farming Technology Laboratory for their assistance and contributions at various stages of the study. Thanks are also addressed to Mr. Alfred Yap for contributions at various stages of the study from National Instrument.

The author is forever indebted to her beloved family in giving support and spirit for sustaining and inspiring her all the times throughout the study.
I certify that a Thesis Examination Committee has met on 11 August 2011 to conduct the final examination of Oh Yun Ju on her thesis entitled “Development of a Low Cost, Microwave-Type Rice Yield Monitor with Wireless Data Communication for Rice Combine Harvester” in accordance with Universities and University College Act 1971 and Constitution of the Universiti Putra Malaysia [P.U.(A)106] 15 March 1998. The Committee recommends that the student be awarded the Master of Science.

Members of the Examination Committee are as follows:

Mohd Amin bin Mohd Soom, PhD
Professor
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Mohammad Hamiruce Marhaban, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Internal Examiner)

Samsul Bahari bin Mohd Noor, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Internal Examiner)

Chan Chee Wan, PhD
Lecturer
Mechanisation and Automation Research Center
MARDI
(External Examiner)

NORITAH OMAR, PhD
Associate Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 28 October 2011
This thesis was submitted to the Senate of Universiti Putra Malaysia has been accepted as fulfillment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Azmi Yahya, PhD, PEng
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Maryam Mohd Isa, PhD
Lecturer
Faculty of Engineering
Universiti Putra Malaysia
(Member)

Samsuzana Abd Aziz, PhD
Lecturer
Faculty of Engineering
Universiti Putra Malaysia
(Member)

HASANAH MOHD. GHAZALI, PhD
Professor and Dean
Graduate School of Studies
Universiti Putra Malaysia

Date:
DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously and is not concurrently submitted for any other degree at Universiti Putra Malaysia or other institutions.

OH YUN JU

Date: 11 August 2011
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>iv</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>vi</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>vii</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>ix</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xviii</td>
</tr>
</tbody>
</table>

CHAPTER

I INTRODUCTION
1. Introduction 1
1.2 Problem Statement 4
1.3 Scope of Study 8
1.4 Objectives 10

II LITERATURE REVIEW
2.1 Introduction 12
2.2 Yield Monitoring Technology 14
2.3 Microwave Sensor 18
2.3.1 Microwave Solid Flow Sensor 18
2.3.2 Microwave Moisture Sensor 22
2.4 Ultrasonic Sensor 25
2.5 Summery 27

III METHODLOGY
3.1 Basic Features of Instrumentation System 29
3.2 Instrumentation System Technical Specifications 33
3.2.1 Embedded System 33
3.2.2 Touch Panel Component 34
3.2.3 Toughbook 35
3.2.4 Wireless Communication Network 35
3.2.5 Differential Global Position System (DGPS) 36
3.2.6 Special Housing Box 37
3.2.7 Generator Set and Power Distribution Box 38
3.2.8 Measurement Sensors 41
3.2.8.1 Ultrasonic Displacement Sensor 41
3.2.8.2 Electromagnetic Rotation Detector 42
3.2.8.3 Microwave Solid Flow Sensor 43
3.2.8.4 Microwave Moisture Content Sensor 44
3.3 Instrumentation System Software 51
3.3.1 FPGA Block Diagram 52
3.3.2 Real Time Block Diagram 52
3.3.3 Host Block Diagram 53
3.3.4 TPC Block Diagram 54
3.4 Running the Instrumentation Software 57
3.5 Field Demonstration of the Instrumentation System 62

IV RESULTS AND DISCUSSIONS 67
4.1 Sensors Calibration 67
 4.1.1 Combine Cutting Width 67
 4.1.2 Combine Elevator Rotation Speed 70
 4.1.3 Grain Flow 72
 4.1.4 Grain Moisture Content 75
4.2 Wireless Strength of Router 77
4.3 Field Demonstration Test With Instrumentation System on the Combine Harvester 79
4.4 Map Plotting of the Yield and Field Performance 88

V CONCLUSIONS AND RECOMMENDATIONS 110
5.1 Conclusions 110
5.2 Recommendations for the Future Studies 113

BIBLIOGRAPHY 114

APPENDICES 120
A LabVIEW Program Block Diagram 121
B OmniSTAR Activation Guide 131
C Data Sheet of the Instrumentation System 132
D Sensor Calibration Data 148

BIODATA OF STUDENT 151