UNIVERSITI PUTRA MALAYSIA

DEVELOPMENT OF STAIRCASE-OUTPUT MULTILEVEL INVERTER

EHSAN ESFANDIARI

FK 2011 111
Development of Staircase-Output MultiLevel Inverter

By

EHSAN ESFANDIARI

Thesis submitted to school of graduate studies, University Putra Malaysia, in fulfillment of the requirement for degree of Doctor of Philosophy

September 2011
Dedicated to:

All two billion people that are deprived from electricity, in hope to day for them to be able to use it, and to advanced that are using it now and to all science and nature advocates.

Dedicated to my wife, Somaieh, my daughter, Alae and my parents
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the degree of Doctor of Philosophy

Development of Staircase-Output MultiLevel Inverter

By

EHSAN ESFANDIARI

September 2011

Chair: Norman Bin Mariun, PhD, PEng

Faculty: Engineering

Due to several scenarios attached to the fossil fuel resources, the world has experienced a trend popularly towards alternative energy sources especially, renewable and clean in extraction as well as generation. This has raised the demand bar for the often popular solar and wind as the energy sources. As a result, renewable power conversion marketing has also dramatically increased during the past decade. Due to the application of inverters in power generation, the coinciding interest is shared equally and thus has created the basis of research interest on multi-level inverters. To acquire desired form of power, especially when precision, reliability and the economy of the project is considered upon, a multi-level inverter is a beneficial choice. They present ability to control higher amount of voltage and current, low THD, low cost, simple control methods, and
compactness. Having exhibited its share of advantages in electronic power conversion, certain previous structures have indicated some limitations which risk hampering its fair deal of positive attributes. Such as the implementation of series connected switches (cascaded), a factor behind the inefficiency, operational heat generation and unreliability. A cascaded structure imposes two important limitations to the system: it limits the efficiency and reliability by increasing the on-state power dissipation in the converter; it directly limits the reliability by increasing the likelihood of failure.

The selection of multi-level inverter configurations, on the basis of on-state voltage drop of switches is possible through developing a new mathematical method to calculate the comparative efficiency in staircase diode-clamped, H-bridge and the proposed inverter with p-n junction and MOSFET switches. These calculations rely on the on-state voltage drop of p-n junction switches, conducting resistance of MOSFET switches, break down voltage, number of levels, peak output voltage, voltage steps magnitude and the load. The calculations show the important effect of on-state voltage drop of switches on the efficiency in staircase multi-level inverters.

Using an affordable multi-winding transformer, a low frequency multi-level DC-AC-AC inverter is proposed and proves to be an advantageous choice. The most important advantage of this multi-level inverter is that only four switches conduct during each step,
which means that it operates with lower number of serial conducting switches, resultantly increasing the efficiency and reliability. Higher reliability when switches fail in open-circuit and short-circuit behavior is another advantage of this inverter structure however, it is recommended to use switches that fail in open-circuit owning to higher reliability of the inverter in open-circuit failures.

Furthermore, some important factors that affect the reliability of inverters have been improved in the proposed inverter, including: duty cycle of conducting switches, voltage stresses, switching frequency, switches` temperature and dependency to capacitors. The system is controlled with a cheap microcontroller. A 5-kW 47-level prototype showed 97.4% ± 0.2% peak efficiency decreases to 91% under a full load and THD starts at 0.66% under a 50-W load increases to more than 7.5% under a full load. The novel proposed inverter, Switch-Ladder multi-level inverter, is a reliable and efficient choice for PV and renewable applications, where the output voltage peak is low and the volume and weight are not important parameters.
ABSTRAK tesis yang dikemukakan kepada Senat University Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah Reka bentuk dan Pembangunan Inverter Tangga-Output Multi-Level

Oleh

EHSAN ESFANDIARI

September 2011

Pengerusi: Norman Bin Mariun, PhD, Peng Fakulty: Kejurateraan

Disebabkan oleh krisis bahan api, dunia telah mengalami satu trend popular, khususnya sumber tenaga alternatif yang boleh diperbaharui dan diekstrak serta dijana dengan bersih. Hal ini menimbulkan permintaan tinggi terhadap sumber tenaga popular iaitu tenaga angin dan solar. Akibatnya, pemasaran penukaran tenaga yang boleh diperbaharui juga telah meningkat secara dramatik sejak sedekad akhir-akhir ini. Oleh kerana pelaksanaan penyongsang dalam penjanaan kuasa elektrik, minat yang tercetus ini dikongsi sama rata dan dengan demikian telah mencipta dasar kepentingan kajian dalam penyongsang berbilang-aras (multi-level inverters).

Penyongsang berbilang-aras mensintesis voltan yang dikehendaki yang hampir kepada sinusoidal, dengan menggunakan sumber voltan yang berasingan atau yang disambung secara belakang ke
belakang. Untuk mendapatkan kuasa yang dikehendaki, terutama ketika mempertimbangkan ketepatan, kebolehpercayaan dan ekonomi, penyongsang berbilang-aras merupakan pilihan yang memanfaatkan. Ia menunjukkan kemampuan untuk mengawal jumlah voltan dan arus elektrik yang lebih tinggi, THD rendah, kecekapan dan kos yang boleh diterima, kaedah kawalan yang mudah, kepadatan dan kebolehpercayaan.

Setelah menunjukkan kelebihan dalam penukaran kuasa elektronik, struktur tertentu sebelum ini telah menunjukkan beberapa halangan yang berisiko mengurangkan ciri-ciri positif yang ada. Seperti pelaksanaan suis berhubung bersiri (lata), faktor kurang kecekapan, penjanaan haba operasi dan tidak boleh dipercayai. Struktur lata menetapkan dua halangan penting terhadap sistem: ia hadkan kecekapan dengan meningkatkan pelepasan kuasa keadaan hidup pada penukar (converter). ia hadkan kebolehpercayaan. Dalam sistem lata, suis gagal dalam litar terbuka atau litar pintas bererti berhenti atau ketidakstabilan pada output yang berdasarkan kepada tatasusunan suis yang tidak boleh diterima.

Pemilihan penyongsang berbilang-aras yang efisien, berdasarkan ciri-ciri berganda boleh dibuat melalui pengiraan matematik diod-terkapit, jambatan-H dan kecekapan penyongsang yang dicadangkan untuk suis simpang p-n dan MOSFET. Perhitungan ini
bergantung pada suis voltan rosak, jumlah aras, voltan output puncak, turunan voltan keadaan-hidup pada suis simpang p-n, rintangan pengaliran MOSFET dan magnitud langkah voltan.

Menggunakan transformer pelbagai lilitan, penyongsang DC-AC-AC berbilang aras frekuensi rendah telah dipерsembahkan dan terbukti menjadi pilihan yang menguntungkan. Kelebihan yang paling penting dari penyongsang ini adalah, hanya empat suis mengalir elektrik pada setiap langkah. Ini bererti ia beroperasi dengan pelepasan kuasa keadaan hidup yang lebih rendah. Kebolehpercayaan tinggi ketika suis gagal dalam litar terbuka dan perilaku litar pintas adalah kelebihan lain struktur penyongsang ini. Sistem ini dikawal dengan mikropengawal murah. Prototaip 5-kW tahap 47 menunjukkan 97.4% ± 0.2% kecekapan puncak dan THD lebih rendah daripada 7.5%.
ACKNOWLEDGEMENTS

This dissertation would not have been possible without the guidance and the help of several individuals who in one way or another contributed and extended their valuable assistance in the preparation and completion of this study.

First, my utmost gratitude to Prof. Dr. Ir. Norman Bin Mariun, for his valuable supervision, encouragement and unselfish and unfailing support throughout the whole work and being my inspiration as I hurdles all the obstacles in the completion this research work.

I am also grateful to my co-supervisor, Associate Prof. Dr. Mohammad Hamiruce Marhaban, for his encouragement, valuable discussions and support.

I would also like to thank Prof. Dr. Azmi Zakaria for his valuable contribution to this work.

I wish to express my gratitude to the staff and colleagues of Electrical and Electronic department for their friendship, encouragement and support to complete this study.

My colleagues and staff in the Electrical Engineering Departments for the use of facilities especially in the power electronic lab.
University Putra Malaysia, for financial support of this work under Grant No.91852.

I wish to express my gratitude to the president of the Islamic Azad University, Majlesi Branch; Dr. Hasan Gheysarian for his financial and moral supports during this study.

Last but not the least, my family, my wife; Somaieh, my parents, Abbasali and Zahra and the one above all of us, the omnipresent God, for answering my prayers for giving me the strength to plod on despite my constitution wanting to give up and throw in the towel, thank you so much Dear Lord.

EHSAN ESFANDIARI
I certify that a Thesis Examination Committee has met on 15/September/2011 to conduct the final examination of Ehsan Esfandiari on his thesis entitled "DEVELOPMENT OF STAIRCASE-OUTPUT MULTILEVEL INVERTER" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the PhD.

Members of the Thesis Examination Committee were as follows:

Hashim Hizam, PhD
Associate Professor
Department of Electrical and Electronic Engineering
Universiti Putra Malaysia
(Chairman)

Ishak Aris, PhD
Professor
Department of Electrical and Electronic Engineering
Universiti Putra Malaysia
(Internal Examiner)

Abdul Halim Mohamed Yatim, PhD
Professor Ir.
Department of Electrical and Electronic Engineering
University Technology Malaysia
(External Examiner)

Muhammad H Rashid, PhD
Professor, Fellow IET, Fellow IEEE
Department of Electrical and Computer Engineering
University of West Florida
USA
(External Examiner)

SEOW HENG FONG, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
APPROVAL

Ahli Jawatankuasa Peperiksaan Tesis adalah seperti berikut:

Hashim Hizam, PhD
Associate Professor
Department of Electrical and Electronic Engineering
Universiti Putra Malaysia
(Chairman)

Ishak Aris, PhD
Professor
Department of Electrical and Electronic Engineering
Universiti Putra Malaysia
(Internal Examiner)

Abdul Halim Mohamed Yatim, PhD
Professor Ir.
Department of Electrical and Electronic Engineering
University Technology Malaysia
(External Examiner)

Muhammad H Rashid, PhD
Professor, Fellow IET, Fellow IEEE
Department of Electrical and Computer Engineering
University of West Florida
USA
(External Examiner)

SEOW HENG FONG, PhD
Profesor dan Timbalan Dekan
Sekolah Pengajian Siswazah
Universiti Putra Malaysia

Tarikh:
This thesis was submitted to the Senate of University Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Doctor of Philosophy. The members of Supervisory Committee were as follows:

Norman Bin Mariun, PhD
Professor Ir.
Department of Electrical and Electronic Engineering
University Putra Malaysia
(Chairman)

Azmi Zakaria, PhD
Professor
Department of Physics
University Putra Malaysia
(Member)

Mohammad Hamiruce Marhaban, PhD
Associate Professor
Department of Electrical and Electronic Engineering
University Putra Malaysia
(Member)

BUJANG KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
University Putra Malaysia
DECLARATION

I declare that the thesis is my original work except for quotations and citations, which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any institution.

Signature

EHSAN ESFANDIARI

Date: 15/September/2011
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>ABSTRACT</th>
<th>III</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRAK</td>
<td>VI</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>IX</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>XI</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>XIV</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>XX</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>XXVII</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>XXIX</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td>Market and installation trend of PVs</td>
</tr>
<tr>
<td>1.2</td>
<td>Power converters for Photovoltaic Power Generators</td>
</tr>
<tr>
<td>1.3</td>
<td>Multi-Level inverters</td>
</tr>
<tr>
<td>1.4</td>
<td>Problem statement</td>
</tr>
<tr>
<td>1.5</td>
<td>Research questions</td>
</tr>
<tr>
<td>1.6</td>
<td>Objectives</td>
</tr>
<tr>
<td>1.7</td>
<td>Research scope</td>
</tr>
<tr>
<td>1.8</td>
<td>Thesis lay-out</td>
</tr>
</tbody>
</table>

2	17	
LITERATURE REVIEW		
2.1	Introduction	17
2.2	Multi-level inverters for renewable sources	18
2.3	Diode-clamped multi-level inverter structure	32
2.3.1	Reliability in diode-clamped inverter	33
2.3.2	Efficiency in diode-clamped inverter structure	35
2.4	Cascaded H-Bridge multi-level inverter structure	35
2.4.1	Efficiency in H-Bridge multi-level inverter	37
2.4.2	Reliability in H-Bridge inverter	37
2.5	On-state voltage drop in multilevel inverters	38
2.6	Harnessing the cascading effect	40
2.7 The primary concept of the proposed multi-level inverter (Switch-Ladder) 41

2.8 The proposed multi-level inverter structure (Switch-Ladder) 44

2.8.1 Increasing the reliability against an open-circuit 47

2.8.2 Increasing the reliability against short-circuit 50

2.8.3 Increasing the reliability of the H-Bridge block 53

2.9 Summary 54

3 **ON-STATE POWER DISSIPATION ANALYSIS** 58

3.1 Introduction 58

3.2 Methodology 60

3.3 Efficiency compared with ideal multi-level inverter 61

3.4 Real efficiency in diode-clamped multi-level inverter 65

3.4.1 Equivalent circuit for the improved diode-clamped multi-level inverter under resistive loads 65

3.4.2 Real efficiency in an improved diode-clamped inverter with MOSFET switches 67

3.4.3 Real efficiency in an improved diode-clamped inverter with p-n junction switches 69

3.4.4 Real efficiency in the original diode-clamped multi-level inverter 70

3.4.5 Real efficiency of the original diode-clamped inverter using MOSFET switches 71

3.4.6 Real efficiency of the original diode-clamped inverter with other p-n junction switches 72

3.5 Real efficiency in H-Bridge multi-level inverter 73

3.5.1 Equivalent circuit for the cascaded H-Bridge multi-level inverter under resistive loads 73

3.5.2 Real efficiency of the cascaded H-Bridge multi-level inverter with MOSFET switches 74

3.5.3 Real efficiency of the H-Bridge inverter with p-n junction switches 75

3.6 Efficiency of the Switch-Ladder inverter 77

XVI
3.6.1 Equivalent circuit for the Switch-Ladder multi-level inverter 77
3.6.2 Real efficiency of the Switch-Ladder inverter with MOSFET switches 77
3.6.3 Real efficiency of the Switch-Ladder inverter with p-n junction switches 80
3.6.4 Calculating the exact efficiency of the Switch-Ladder multi-level inverter 81

3.7 Results and discussion 82
3.7.1 Case 1 82
3.7.2 Case 2 83
3.7.3 Case 3 85
3.7.4 Case 4 86
3.7.5 Case 5 86
3.7.6 Inductive and capacitive loads 87
3.7.7 On-state power dissipation in diode-clamped inverter under pure inductive loads 88

3.8 Summary 91

4 Simulation 94
4.1 Introduction 94
4.2 Software simulation tools 95
4.3 Multi-Winding transformer model 96
4.4 Schematic of Switch-Ladder multi-level inverter 98
4.4.1 H-Bridge block 100
4.4.2 Main switch blocks 102
4.5 Results and discussion 103
4.5.1 Behaviors of the 11-level inverter under inductive and resistive loads 103
4.5.2 Behaviors of a 47-level Switch-Ladder multi-level inverter under resistive and inductive loads 110
4.6 Summary 111

5 System Design 113
5.1 Introduction 113
5.2 Equipment List for Experimentation 114
5.3 System operation overview 115
 5.3.1 H-Bridge Block 116
 5.3.2 Main switches 118
 5.3.3 Signal generator and driver modules 119
 5.3.4 Multi-winding transformer 121
5.4 Switching strategy 122
5.5 Results and discussion 125
 5.5.1 Feasibility and behavior of the system under resistive and inductive loads 125
 5.5.2 Behavior of the system under fault conditions 129
 5.5.3 Efficiency 131
 5.5.4 Total harmonic distortion 132
 5.5.5 No-load power consumption 133
 5.5.6 Voltage stresses 134
 5.5.7 Improved system with the driver integrated to switch modules 135
 5.5.8 Cost analysis 137
 5.5.9 Comparison with the previous inverters 139
5.6 Calculating the MTBF in the proposed inverter 139
 5.6.1 MTBF definition 140
 5.6.2 Prediction of failure rate under constant conditions (Parts count) 140
5.7 Advantage and disadvantage at a glance 144
 5.7.1 Advantages 144
 5.7.2 Disadvantages 145
5.8 Improving the proposed inverter for higher voltages 146
 5.8.1 Feasibility of the proposed structure at high voltages 146
 5.8.2 Multi-winding transformer-based diode-clamped multi-level inverter: another Switch-Ladder edition 147
 5.8.3 Basic structure 148

XVIII