MEIOBENTHOS OF MALACCA STRAITS AND USE OF N/C RATIO AS BIOLOGICAL INDICATOR FOR COASTAL POLLUTION

B.A.G. Idris, M. Kusnan, Z. Kassim and A. Ismail
Faculty of Sciences and Environmental Studies
Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia

Keywords: bioindicator, invertebrate, Malacca Straits, meiobenthos, pollution.

Introduction
Meiobenthos is a microscopisc invertebrate with body size of less than 1 mm, lives in bottom sediments of fresh water and marine habitats. Twenty-two out of 33 metazoan phyla are represented in meiobenthos taxa. Meiobenthos can be found in any type of sediment, from muddy sediment to rough sand and gravel. Certain taxon can be found on seagrasses, seaweeds and amongst corals. Some meiobenthos adapt to life in the sediment as mesobenthic or interstitial organism. Due to its benthic nature and a very short life cycle, it was found recently that meiobenthos is a very reliable and good biological indicator for detection of coastal pollution (Higgins and Theil 1988; Subramanium et al.1988). In Malaysia, there are very little studies on subtidal meiobenthos. Studies by Idris et al. (1994a, 1994b) revolved around intertidal area only. The studies on meiobenthos in Asia especially in subtidal area are very rare except for some studies in Japan and China, and in the Indian Ocean.

Materials and Methods
The sampling was carried out at six stations along two transects lines in subtidal areas in the Straits of Malacca. Box corer with size of 20X30X50 cm was used to sample the sediments. Sediment samples were then sliced with thickness of about 2 cm each. For each slice, three replicates of subsamples were taken using hand corer of 2.2 cm in diameter (3.7994 cm³). The samples were preserved in 5% of neutralised formaline with rose Bengal added. In the laboratory the preserved samples were elutriased by using modified Boissette Apparatus and were sieved using 1 mm dan 42 μm mesh sizes nets. Sediment samples and meiobenthos which were caught in the 42 μm net were washed into the petri dishes and were decanted through sieves six to eight times. The meiobenthos samples were then sorted and counted using binocular dissecting microscope. All meiobenthos taxa were identified using guide from Higgins and Theil (1988).

Results and Discussion
Nine taxa of meiobenthos were recorded from subtidal areas of the Malacca Straits, namely Foraminifera, Ostracoda, Polychaeta, Nematoda, Copepoda, Tardigrada, Oligochaeta, Kinorhyncha, and Cumacea. The mean density of meiobenthos in the subtidal areas of the Malacca Straits was 332.2±83.5 individual/10cm². Among all the taxa, it was found that the most dominant taxon was Foraminifera with a mean density of 220.7±65.6/10cm² or 66.43%, followed by Nematoda (41.3±12.8/10cm or 12.44%), Ostracoda (31.8±8.9/10cm² or 9.58%) and Polychaeta (20.8±6.9/10cm² or 10.54%). Foraminifera were the most dominant taxon at all stations and depth, while Tardigrada, Cumacea and Kinorhyncha were present but in low density. The study on vertical distribution of meiobenthos taxa and its density in subtidal areas of the Malacca Straits showed that all taxa of meiobenthos stayed at the top 6 cm of the sediment layer and reduced rapidly with increase in depth. In term of density it was found that 83.65 % of meiobenthos density accumulated in the first 6 cm of the sediment layers. Only two taxa survived up to 20 cm of the sediment layers, that is Foraminifera and Ostracoda.

Conclusions
Meiobenthos may be used as a bioindicator of organic pollution.

References

Supported by IRPA Grant 08-02-04-0019