ANTIMICROBIAL ACTIVITY OF MELASTOMA MALABATHRICUM LINN. FLOWER AND FRUIT CRUDE EXTRACTS

SITI NURHADIS BINTI CHE OMAR

FBSB 2012 47
ANTIMICROBIAL ACTIVITY OF *MELASTOMA MALABATHRICUM* LINN. FLOWER AND FRUIT CRUDE EXTRACTS

By

SITI NURHADIS BINTI CHE OMAR

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirement for the Degree of Master of Sciences

June 2012
Abstract of thesis presented to Senate of Universiti Putra Malaysia in fulfillment of the requirement for the degree of Master of Science

ANTIMICROBIAL ACTIVITY OF *MELASTOMA MALABATHRICUM* LINN. FLOWER AND FRUIT CRUDE EXTRACTS

By

SITI NURHADIS BINTI CHE OMAR

June 2012

Chairman: Janna Ong Abdullah, PhD

Faculty: Biotechnology and Biomolecular Sciences

Natural products are rich sources of antimicrobial compounds with broad spectrum and sufficiently good pharmacokinetics to be clinically useful without chemical modifications. With the increase in microbial resistance to antibiotics, there is considerable interest in investigating the antimicrobial effects of potential plant extracts as potential sources for developing natural antimicrobial agents. *Melastoma malabathricum* Linn. is a shrub that belongs to the family Melastomataceae and a common herbal plant used in folk medicines to treat inflamed wounds and other ailments. It is commonly found in Malaysia with beautiful pink or purple flowers and berries-like fruits rich in anthocyanins. Hence, this study was carried out with the aim to evaluate the inhibitory activities of different concentrations of the *M. malabathricum* Linn. flower and fruit crude extracts against a variety of microorganisms, which comprised of 12 Gram-positive bacteria, 17 Gram-negative bacteria and three fungi species using the disc diffusion method. The lowest concentrations of the extracts
producing inhibition zones against the test microorganisms were used to determine their Minimum Inhibitory Concentrations (MICs) and Minimum Bactericidal Concentrations (MBCs) or Minimum Fungicidal Concentrations (MFCs). In addition, the effects of different temperatures (4°C, 25 °C and 37 °C) and pHs (4, 6, 7 and 8) on the stability of the crude extracts correlating to their growth inhibitory ability were determined for *Listeria monocytogenes* IMR L55 and *Staphylococcus aureus* IMR S244 grown in medium supplemented with the respective crude extracts at different temperatures and pHs. *In vitro* cytotoxicity effect of the *M. malabathricum* Linn. extracts on the human Chang liver and 3T3- Fibroblast cells using the MTT assay was also carried out. Overall, the Gram-positive bacteria were more susceptible to both crude extracts compared to the Gram-negative species. The results showed that both crude flower and fruit extracts exhibited strong inhibitory activities against *Micrococcus luteus* but had no effects on all fungi tested. The MIC values for the crude flower and fruit extracts on all the bacteria tested ranged from 12.5 to 100.0 mg/ml. While, the average MBC values were from 50.0 to 100.0 mg/ml for both extracts. *L. monocytogenes* IMR L55 and *S. aureus* IMR S244 exhibited the highest sensitivity to both crude extracts at 100 mg/ml. The crude flower extract was more effective in inhibiting the growth of *L. monocytogenes* IMR L55 in which a reduction of 4.5 to 8.0 log CFU/ml was detected when tested at pHs 4, 6, and 7 for 4 °C, 25 °C and 37 °C. While, the crude fruit extract was more effective in reducing the growth of *S.aureus* IMR S244 with 4.5 to 8.0 log CFU/ml reduction at pHs 4, 6, 7 and 8 for 25 °C and 37 °C. The MTT assay showed that the crude fruit extract exhibited an IC$_{50}$ of 0.70 mg/ml when tested on Chang liver cells after 48 hours of treatment compared to the crude flower extract (IC$_{50}$ ≥ 1.0 mg/ml); whereas the 3T3-
Fibroblast cells incubated with the flower and fruit extracts showed an IC$_{50}$ of 0.40 mg/ml and 0.60 mg/ml, respectively. Overall, the results obtained in this study pinpoint that both extracts have potentials to inhibit or kill selective bacterial pathogens, with the flower extract exhibiting better antibacterial activity compared to the fruit extract. The data also suggests the possible uses of the extracts to control selective pathogens and as natural sources for the discovery of natural antibacterial agent(s) in the future.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

AKTIVITI ANTIBAKTERIA PADA EKSTRAK BUNGA DAN BUAH MELASTOMA MALABATHRICUM LINN.

oleh

SITI NURHADIS BINTI CHE OMAR

Jun 2012

Pengerusi: Janna Ong Abdullah, PhD

Fakulti: Bioteknologi dan Sains Biomolekul

Produk semulajadi adalah sumber yang kaya dengan sebatian antimikrobial dengan spektrum yang luas dan farmakokinetik yang baik untuk kegunaan klinikal tanpa modifikasi kimia. Dengan peningkatan rintangan mikroorganisma terhadap antibiotik, tumpuan kepada penyelidikan untuk mencari agen semulajadi antimikrob daripada ekstrak-ekstrak tumbuhan kian meningkat. Melastoma malabathricum L. merupakan tumbuhan yang berasal dari keluarga Melastomataceae dan ia adalah pokok herba yang biasa digunakan dalam perubatan tradisional untuk merawat luka dan penyakit lain. Pokok ini mudah dijumpai di Malaysia dan mempunyai bunga berwarna merah jambu atau ungu dan buah yang kaya dengan antosianin. Oleh demikian, kajian ini dijalankan bertujuan untuk menilai aktiviti perencatan pada pertumbuhan 12 bakteria Gram-positif, 17 bakteria Gram-negatif dan tiga spesis kulat oleh ekstrak bunga dan buah tumbuhan ini pada kepekatan yang berlainan dengan menggunakan kaedah penyebaran disk. Zon rencatan yang dihasilkan oleh mikroorganisma yang telah diuji pada kepekatan ekstrak
yang terendah telah digunakan untuk menentukan nilai kepekatan minima perencatan (MICs) dan nilai kepekatan minima kebolehan membunuh bakteria (MBCs) dan kepekatan minima kebolehan membunuh kulat (MFCs). Di samping itu, kesan suhu (4°C, 25°C dan 37°C) dan pH (4, 6, 7 dan 8) pada kestabilan ekstrak juga diuji untuk melihat potensi ekstrak tersebut merencat pertumbuhan Listeria monocytogenes IMR L55 and Staphylococcus aureus IMR S244. Kajian ini juga menguji kesan ketoksikan ekstrak tumbuhan in pada pertumbuhan sel hati manusia (‘human Chang liver cell’) dan kulit (‘3T3-Fibroblast cell’) menggunakan kaedah MTT. Pada keseluruhannya, kajian ini menunjukkan bakteria Gram positif adalah lebih sensitif berbanding bakteria Gram negative terhadap kedua-dua ekstrak. Kedua-dua ekstrak menunjukkan kesar perencatan yang tinggi pada Micrococcus luteus dan tiada kesar perencatan pada kulat. Nilai MIC untuk ekstrak bunga dan buah pada semua mikroorganisma yang diuji adalah di antara 12.5 hingga 100.0 mg/ml. Manakala, nilai purata bagi MBCs adalah di antara 50.0 hingga 100.0 mg/ml. Pada kajian ke atas kesar suhu dan pH, kedua-dua ekstrak telah merencatkan pertumbuhan Listeria monocytogenes IMR L55 and Staphylococcus aureus IMR S244 pada 100 mg/ml kepekatupan ekstrak yang diuji. Kesar perencatan menunjukkan perbezaan ketara pada ekstrak bunga berbanding dengan ekstrak buah apabila pertumbuhan Listeria monocytogenes IMR L55 diperolehi pada pH 4, 6, dan 7 untuk semua suhu yang diuji (4°C, 25°C dan 37°C) kekurangan pertumbuhan kira-kira 4.5 ke 8.0-log CFU/ml. Sedangkan pertumbuhan Staphylococcus aureus IMR S244 pada suhu 25°C dan 37°C telah menunjukan kesar perencatan yang ketara oleh ekstrak buah berbanding ekstrak bunga pada pH 4, 6, 7 dan 8 dengan kesar kekurangan pertumbuhan kira-kira 4.0 ke 8.0-log CFU/ml. Nilai IC50 bagi ekstrak buah yang diuji pada sel hati
melalui ujian MTT adalah 0.75 mg/ml berbanding \(\geq 1.0 \) mg/ml bagi ekstrak bunga selepas 48 jam diuji. Manakala, untuk fibroblast pula, nilai IC\(_{50}\) bagi kedua-dua ekstrak adalah 0.40 mg/ml dan 0.60 mg/ml selepas 48 jam diuji. Pada keseluruhan, hasil kajian ini menunjukkan bahawa kedua-dua ekstrak mempunyai potensi berkemungkinan diguna untuk merencat ataupun membunuh pembiakan sesetengah bakteria, dan ekstrak bunga menunjukkan aktiviti antibakteria yang lebih baik berbanding ekstrak buah. Data yang diperolehi mencadangkan ekstrak ini boleh digunapakai untuk mengawal pembiakan atau pertumbuhan bakteria patogenik dan juga sebagai sumber semulajadi agen antibakteria yang baru pada masa akan datang.
ACKNOWLEDGEMENTS

First and foremost, I would like to extend my greatest gratitude to my supervisor, Assoc. Prof. Dr. Janna Ong Abdullah for her continual tireless help, guidance and encouragement throughout the span of this study. A word of thanks also goes to Assoc. Prof. Dr. Muhajir Hamid for providing me with the facilities and guidance to run the cytotoxicity tests. I would also like to take this opportunity to thank Assoc. Prof. Dr. Sieo Chin Chin for her guidance, advice and facilities on antimicrobial analyses.

I also wish to thank the Vice Chancellor and the Dean of Institute of Graduate Studies, UPM for giving me the opportunity to complete my Master programme in UPM. I also wish to thank the Dean of Faculty Biotechnology and Biomolecular Sciences, UPM for approving my research work and providing the facilities during my study. I would also like to thank En. Rozaidi, Pn. Saripah, Pn. Aishatulelyana, Cik Nordiana, Pn. Hasrene and all other academic and non-academic staff of the Faculty who have helped me in one way or another during the course of this study. I would also like to extend my most sincere thanks and appreciation to all Lab 002 members, especially Chew Tiong Dar, who had been with me to help me and also shared his experiences and knowledge.

Last but not least, my deepest gratitude to my parents and siblings who have given their support and love that enable me to keep moving on. My special thanks goes to my beloved husband, Khairul Anuar Khairoji, for his continual tireless help, sacrifices, love, care, understanding and moral support. Also to my daughters, Nur
Qurratulain Zahraa and Nur Shiyana Asyiqin, thank you for being an understanding childrens. Without all your support and encouragement, my dream will remain a dream.
APPROVAL

I certify that a Thesis Examination Committee has met on 28 June 2012 to conduct the final examination of Siti Nurhasi Binti Che Omar on her thesis entitled "Antimicrobial Activity of Melastoma malabathricum Linn. Flower and Fruit Crude Extracts" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The committee recommends that the student be awarded the Master of Science.

Members of the Thesis Examination Committee were as follows:

Wan Zuhainis Saad, PhD
Senior Lecturer
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Chairman)

Syahida Ahmad, PhD
Senior Lecturer
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
/Internal Examiner

Shuhaimi Mustafa, PhD
Senior Lecturer
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
/Internal Examiner

Kalavathy a/p Ramasamy, PhD
Associate Professor
Faculty of Pharmacy
Universiti Teknologi Mara
(External Examiner)

SEOW HENG FONG, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 27 September 2012
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Janna Ong Abdullah, PhD
Associate Professor
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Chairman)

Muhajir Hamid, PhD
Associate Professor
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Member)

Sieo Chin Chin, PhD
Associate Professor
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institution.

SITI NURHADIS BINTI CHE OMAR

Date: 28 June 2012
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Microbial species, their cultivation and assay media used in this study</td>
<td>35</td>
</tr>
<tr>
<td>2</td>
<td>Inhibition zone (mm) exhibited by crude flower extract against microorganisms</td>
<td>52</td>
</tr>
<tr>
<td>3</td>
<td>Inhibition zone (mm) exhibited by crude fruit extract against microorganisms</td>
<td>53</td>
</tr>
<tr>
<td>4</td>
<td>MIC and MBC (mg/ml) values of crude flower extract against microorganisms</td>
<td>57</td>
</tr>
<tr>
<td>5</td>
<td>MIC and MBC (mg/ml) values of crude fruit extract against microorganisms</td>
<td>58</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Melastoma malabathricum Linn.</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>Basic structure of anthocyanin</td>
<td>13</td>
</tr>
<tr>
<td>3</td>
<td>Anthocyanins stability pathway</td>
<td>15</td>
</tr>
<tr>
<td>4</td>
<td>Anthocyanins biosynthesis pathway</td>
<td>17</td>
</tr>
<tr>
<td>5</td>
<td>Antimicrobial susceptibility testing methods.</td>
<td>28</td>
</tr>
<tr>
<td>6</td>
<td>Melastoma malabathricum Linn. crude extract.</td>
<td>48</td>
</tr>
<tr>
<td>7</td>
<td>Effects of Melastoma malabathricum Linn. flower and fruit crude extracts on the growth of Listeria monocytogenes L55 incubated at 37°C with different pH values.</td>
<td>63</td>
</tr>
<tr>
<td>8</td>
<td>Effects of Melastoma malabathricum Linn. flower and fruit extracts on the growth of Listeria monocytogenes L55 incubated at 25°C with different pH values.</td>
<td>65</td>
</tr>
<tr>
<td>9</td>
<td>Effects of Melastoma malabathricum Linn. flower and fruit crude extracts on the growth of Listeria monocytogenes L55 incubated at 4°C with different pH values.</td>
<td>67</td>
</tr>
<tr>
<td>10</td>
<td>Effects of Melastoma malabathricum Linn. flower and fruit crude extracts on the growth of Staphylococcus aureus S244 incubated at 37°C with different pH values.</td>
<td>69</td>
</tr>
<tr>
<td>11</td>
<td>Effects of Melastoma malabathricum Linn. flower and fruit crude extracts on the growth of Staphylococcus aureus S244 incubated at 25°C with different pH values.</td>
<td>71</td>
</tr>
<tr>
<td>12</td>
<td>Effects of Melastoma malabathricum Linn. flower and fruit extracts on the growth of Staphylococcus aureus S244 incubated at 4°C with different pH values.</td>
<td>72</td>
</tr>
</tbody>
</table>
13 Effects of *Melastoma malabathricum* Linn. flower and fruit crude extracts on Chang liver cells after 48 hr exposure time.

14 Effects of *Melastoma Malabathricum* Linn. flower and fruit crude extracts on 3T3-F442A Fibroblast cells after 48 hr exposure time.
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAO</td>
<td>Food and Agriculture Organization</td>
</tr>
<tr>
<td>h</td>
<td>hour</td>
</tr>
<tr>
<td>g</td>
<td>gram</td>
</tr>
<tr>
<td>mg</td>
<td>milligram</td>
</tr>
<tr>
<td>mg/ml</td>
<td>milligram per milliliter</td>
</tr>
<tr>
<td>ml</td>
<td>milliliter</td>
</tr>
<tr>
<td>MBC</td>
<td>Minimum Bactericidal Concentration</td>
</tr>
<tr>
<td>MIC</td>
<td>Minimum Inhibitory Concentration</td>
</tr>
<tr>
<td>MMC</td>
<td>Minimum Microbicidal Concentration</td>
</tr>
<tr>
<td>MTT</td>
<td>(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide)</td>
</tr>
<tr>
<td>NA</td>
<td>Nutrient Agar</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate buffer saline</td>
</tr>
<tr>
<td>PDA</td>
<td>Potato Dextrose Agar</td>
</tr>
</tbody>
</table>

xvi
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>ABSTRACT</th>
<th>ii</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRAK</td>
<td>v</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>vii</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>vi</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xvi</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION

2 LITERATURE REVIEW

2.1 Melastomataceae species
2.2 *Melastoma malabathricum* Linn.
 2.2.1 Plant morphology
 2.2.2 Habitat and distribution
 2.2.3 Traditional and general usages
 2.2.4 Pharmacological activities of *M. malabathricum* Linn.
2.3 Phytochemicals
2.4 Anthocyanins
2.5 Extraction
2.6 Antimicrobial agent
 2.6.1 History of antibiotics
 2.6.2 Pathogenic microorganisms
 2.6.3 Antibiotic resistance by microorganisms
2.7 Antimicrobial properties of medicinal plants
2.8 Antimicrobial test
2.9 Foodborne diseases
2.10 Food preservatives

3 MATERIALS AND METHODS

3.1 Materials
 3.1.1 Media and chemicals
 3.1.2 Plant materials
 3.1.3 Microbial sources
 3.1.4 Animal tissue sources
3.2 Medium preparation
 3.2.1 Nutrient agar and broth
 3.2.2 Potato dextrose agar and broth
 3.2.3 Animal tissue culture medium
3.3 Plant crude extraction
3.3.1 Crude flower and fruit extracts 38
3.4 Antimicrobial assay 39
3.4.1 Preparation of extract concentrations 39
3.4.2 Disc diffusion method 39
3.4.3 Determination Minimal inhibition concentration (MIC) 40
3.4.4 Determination Minimal bactericidal Concentration (MBC) 41
3.4.5 Growth inhibition kinetic 41
3.5 Cytotoxicity assay 42
3.5.1 Cells recovery 42
3.5.2 Subculture procedure 43
3.5.3 Trypan blue exclusion test 43
3.5.4 MTT assay 44
3.6 Data analysis 45

4 RESULTS AND DISCUSSION
4.1 Extraction of Melastoma malabathricum Linn. crude flower and fruit extracts 46
4.2 Antimicrobial activities 50
4.2.1 Inhibition zone, MIC and MMC 50
4.2.2 Temperature and pH effects 61
4.2 Cytotoxicity activities 76

5 CONCLUSION AND RECOMMENDATIONS 80

REFERENCES/BIBLIOGRAPHY 83
APPENDICES 101
BIODATA OF STUDENT 102
LIST OF PUBLICATIONS 103