Survival of Young Mangosteen in the Field as Influenced by Shading and Water Stress

Mohd Razi Ismail, Mohamad Hamad Awad and Adwidwirwan Izhar

Faculty of Agriculture
Universiti Putra Malaysia
43400 UPM, Serdang, Selangor Malaysia
E-mail of Corresponding Author: razi@agri.upm.edu.my

Key words: water stress, shading, mangosteen, drought avoidance, physiological responses.

Introduction
The mangosteen (Garcinia mangostana L.) which originated in the tropical rainforest is now cultivated commercially in most of tropical region. In Malaysia, mangosteen is designated to be one of the national fruit crops (NAP3, 1999). To ensure success of cultivation of mangosteen, fundamental responses of plants exposed to environmental factors need to be understood. This includes understanding of plant behaviour at various growth stages and the plant requirement for optimum growth and development. Young mangosteen plants are considered to be a drought sensitive and careful husbandry during early establishment is essential (Masri et al., 1997). There are reports that shading is also important to ensure survival of plants during transplanting (Rukayah et al. and Zabedah, 1992; Masri et al., 1992).

Shading of mangosteen plants may consequently affect other cultural practices such as irrigation, fertiliser application and other related crop management. On the other hand, shading of mangosteen may be beneficial in improving plant microclimatic factors for plant survival. In rainfed cultivation, shading may reduce water availability to the root zone of mangosteen. At present, no information was available on the responses of mangosteen plants in relation to shading and water availability under field condition. This study was undertaken to examine the growth and physiological processes of mangosteen plants grown under shade and water availability.

Materials and Methods
Uniform seedlings of 18 month old mangosteen were transplanted into planting holes containing soil mixture of 3:2:1 (top soil: chicken manure : sand) under field conditions. The seedlings were grown under two different shade treatments. The shade treatments were control (unshaded), and 60% shade achieved by using black nylon net. The plants were either watered daily or left unwatered. For well-watered treatment, plants were irrigated daily to maintain soil volumetric water content at above 20 %. The treatments were arranged in a randomised design with eight replicates. The transplanting of mangosteen seedlings was done in the evening. The experiment was conducted during the dry season at the experimental plot in Kelantan, located at the East Coast of Peninsular Malaysia. There was no rainfall at the site during experimental period. In addition, day air temperature was high and on several occasions, air temperature above 30°C could have been reached after 0930h.

The soil mixture in the planting holes was completely wetted during the transplanting of plants, which was carried out in the evening. At the beginning of the experiment, there were at least 14 green mature leaves on the plants. Leaf appearance was recorded daily and leaf scorched number was recorded. Leaf water potential was measured at transplanting, 3, 5, 6 and 8 day’s plants in the treatments. Stomatal conductance was recorded daily using a transit time porometer (AP-4, Delta T, Cambridge, England). Leaf adjacent to the leaf sampled for leaf water potential was used to record stomatal conductance to determine relationship between both parameters as influenced by the treatments.

Results and Discussion
Within 24h exposure to light, leaves of newly transplanted mangosteen plants show discoloration of leaves or photo-browning. Leaf discoloration appeared on the tip of the leaf blades and spread to the whole leaves causing leaf scorching. Further exposure to unshaded condition had resulted to a progressive increase of leaf browning and necrosis of upper leaves spread to lower leaves. After 8 day of unshaded conditions, all leaves exhibited bleaching and necrosis on both well watered and water stressed plants. In contrary, there was no bleaching of leaves on plants grown on both watering treatments under shaded conditions (Figure 2). Young mangosteen is a typical shade plant that light saturation occurred at about 400-500 µmol m⁻² s⁻¹ (Ramlan et al., 1992; Wiebel et al., 1993). Exposure of leaves to high irradiance will induce photoinhibition. The damage to the photosynthetic organelles can result in photodestruction of photosynthetic pigment. Powles et al. (1984) suggested that the destruction of pigment is evident as oxygen and light bleaching of pigments may result in the death of cell through photooxidation. This process was signified in the present study by complete bleaching of leaves with exposure to irradiance regardless of water availability in the root zone. Shading at early growth stage mangosteen plants may presumably restrict ultraviolet radiation that can contribute to the scorching and glazing of leaves. The present study showed a rapid discoloration of leaves when plants were exposed to irradiance with all leaves affected within 9 days after transplanting. Mangosteen leaves that were established under shaded condition at nursery may have high chlorophyll content by compensating for the thinner palisade mesophyll through extensive grana formation as reported on many shade plants (Goodchild et al., 1972). When exposed to irradiance, these organelles were not able to fully acclimatise. The results obtained from the present study was also consistent with those observed on shade grown beech (Fagus sylvatica) plants showing symptom of chlorophyll bleaching when exposed to irradiance and water stress within 8 days of exposure (Tognetti et al., 1994). In other crops like ginger (Zingiber officinale), chlorotic symptoms were observed.
within 30 days of sprouting and were severely affected after 4 months grown under unshared conditions (Wilson et al. and Ovid, 1993).

Conclusions
Our observations indicate that water relations and plant development of mangosteen plants can be sustained or improved by imposing shade at earlier phase of vegetative growth. During the 9 day period after imposing treatments, water stressed plants were able to maintain leaf water potential close to the well watered plants suggesting that shading can offset the effect of water stress in mangosteen plants. In practice, survival of young mangosteen plants can be ascertained provided that plants grown under shade will able to withstand water stress conditions. With proper crop management practices, mangosteen plant can be used as one of the component in agro forestry.

Benefits from the study
In practice, survival of young mangosteen plants can be ascertained provided that plants grown under shade will able to withstand water stress conditions. With proper crop management practices, mangosteen plant can be used as one of the component in agro forestry.

Literature cited in the text


Project Publications in Refereed Journals

Project Publications in Conference Proceedings

Graduate Research
None.