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ABSTRACT 

Most variable order, variable stepsize codes for solving ODEs vary the order 
along the interval of integration but keep the order constant across the system. 
However, some codes that do partitioning of the ODEs into stiff and nonstiff 
subsystems vary the order for each equation in the system. In this paper, the reasons 
for varying the order componentwise are given and some of its salient features are 
illustrated using a numerical example. Also given is the direct proof of the existence 
of a region of absolute stability when different order Adams explicit methods are 
used to solve a system of ODEs. 
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1. INTRODUCTION 

Variable order variable stepsize codes, see for instance [1-3], vary the 
order along the subintervals of integration but keep the order constant for 
the system as a whole. However, in [4, 5] the codes that partition a system of 
ODEs into stiff and nonstiff subsystems and solve them with the Adams and 
BDF methods, respectively, permit the order to vary separately for each 
equation in the system. This additional complexity requires justification in 
terms of efficiency and raises the question of whether such codes have a 
nonempty absolute stability region. Gear [6] expressed his apprehension over 
solving a system of ODEs using the multistep and varying the order 
componentwise, because it may lead to the absence of an absolute stability 
region. However, S5derlind [7], proved that for multistep methods that are 
stable, varying the order preserves their stability. 

In this paper, we discuss the reasons for varying the order for each 
equation and illustrate, by way of a numerical example, some of its salient 
features. Next, a direct proof of the existence of the absolute stability region 
is given for the Adams explicit methods when the order is varied. For the 
implicit cause it may similarly be proved. 

2. WHY USE DIFFERENT ORDER ADAMS METHODS? 

For ease and uniformity of notation, the following are defined as k-step 
methods: 

i) The explicit k-step Adams method. 
ii) The PECE Adams method using a k-step explicit predictor and a 

k-step implicit corrector. 
iii) The ( k -  1)-step BDF method implemented using a k-step explicit 

Adams formula as predictor and correcting twice the BDF method using a 
Newton-type correction. 

The methods have local truncation errors (1.t.e) of different order in h. 
For (i) the 1.t.e. is of O(hk+ 1), while (ii) is of O(h k+2) and (iii) is of O(hk). 
The methods given in (ii) and (iii) are used in [4] and [5] to solve nonstiff and 
stiff ODEs, respectively, which we shall be using to solve our numerical 
example. 

Now consider the first order system of ODEs 

y' = f ( x ,  y), y(a)  = •, y ~ [~8. (2.1) 

Codes for solving (2.1) may have different strategies for changing the 
order. We mention here the order-changing strategies of some nonstiff ODE 
codes, which are also applicable to stiff codes. Gear [1] has the following 
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order strategy. If e k = [ elk , e 2 k , . . .  , esk IT is the local error of solving (2.1) 
with the k-step predictor-corrector method for the interval [ x,_ 1, x j  with 
stepsize h~, then the next stepsize h~+ 1 for the interval [ xn, x~+ 1] using 
order r is given by 

TOL 
= R1/(r+l)hn where R r = h n + ~  - -r  I leJl  ' r = k - l , k , k + l .  (2.2) 

The choice of the order r for the said interval is such that  hn+ 1 is the 
maximum. Krogh's choice in [6] is based on the ratio I O / R  k with other 
additional rules related to the terms in the local error function. 

Shampine and Gordon [3] use a simple but effective order choice strategy. 
Except for the initial phase, they use the following rules. The order is raised 
from k to k + 1 only after k + 1 successful steps at constant stepsize, 
provided that  for 1 < k ~< 12, Ilek+lll < Ilekll < max(llek_lll, Ilek_211), and for 
k = 1, tlek+111 < [10.5ekll, the order is lowered by one if for k > 2, 
max(ll ek_lH, Ilek_21l) -<< Ilekl[ and for k = 2, [lek-ll[ -<< max(ll e~ll, N ek+ll[). 

Once the choice of k is made, then hn+ 1 is given as in (2.2). The 
componentwise version of this order strategy is used in [4] and [5], which are 
codes for both stiff and nonstiff ODEs. The advantage of a constant order 
for the system is that  one has to calculate the ratio R k for each step only 
once. When the order is varied componentwise and k i is the order of the 
Adams method in the ith equation for system (2.1), then one has to 
calculate 

= I TOL / 1/(ki+l) 
Rk' [11%llJ ' 

for all i = 1 , . . . ,  s. The next step size then is given by h~+ 1 = R*hn where 
R* = min i Rk. 

Why then vary the order componentwise? In the order strategy of 
Shampine and Gordon (henceforth in the discussion, this is the order-chang- 
ing strategy that  will be referred to for the constant-order case in the system 
and will be simply called the constant order k case), the order k for this 
system is determined by the component contributing to II ekl]. This value of k 
may be too conservative for some of the components, and can result in some 
loss of accuracy to the computed solutions of these components. It could also 
be too high for some others, which implies extra overhead due to more terms 
for the predictor and divided difference. These points will be further 
illustrated with the numerical example given later. 

Another reason is the consequence of the remark of Shampine and 
Gordon that  their code chooses lower order k ~< 4 following frequent step 
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failures whenever instability due to stiffness occurs in solving stiff equations. 
This is because the lower order Adams PECE methods have better stability. 
It seems natural that  if different order methods are used componentwise, 
then those that  are unaffected by instability can choose higher order 
methods. This would then be very useful in partitioning ODEs into nonstiff 
and stiff subsystems, especially when it has been notedthat  in many practi- 
cal problems the stiff subsystem is smaller compared with the nonstiff one. 
It implies that  solving the nonstiff equations with Adams methods and the 
stiff ones with BDF would then reduce the number of equations in the 
Jacobian evaluation of the stiff subsystem and the subsequent solution of 
the linear equations. 

What  is more pleasing is that  an equation is changed from nonstiff to stiff 
at the most appropriate moment,  at the point where stability restricts the 
Adams method. To be successful it is necessary to identify the equations 
that  are the cause of stiffness. They may or may not be the equations that  
have frequent step failures but certainly are among those with low order 
methods. Two variations of identifying stiff equations were given by the 
author in [5] and Hall and the author in [4]. 

The codes in [4] and [5] are adequate to solve most stiff systems, despite 
the fact that  the partitioning does not take into account changes in the state 
of the equations from stiff to nonstiff. This is because most equations 
considered stiff do not revert to the nonstiff state and also the fact that  
nonstiff equations can still be solved by BDF methods, although they are 
computationally expensive. However, there are first order systems, for 
instance the Van Der Pols equations, see [8], where the state changes 
frequently from nonstiff to stiff and vice-versa. A code that  is sensitive to 
these changes of states is called a type-insensitive code. Currently type-in- 
sensitive codes change the methods of solution to the system as a whole (see 
[9-12]). In other words no componentwise partitioning from nonstiff to stiff 
and vice-versa is done. In such a case the code should be able to handle 
changes from stiff to nonstiff. An early indicator of the need for such a 
change is to look at the behavior of variable order BDF methods when the 
transients are reintroduced. In the presence of transients, a reverse effect of 
the Adams methods in the presence of instabilities occurs. Here the BDF 
methods choose the highest permissible order, viz. the sixth order method 
with step failures and nonconvergences. These failures occur because the 
iteration matrix I -  hfl J, has not been refactored when h is reduced and 
when changes have occurred in the Jacobian matrix J during the change in 
the state of the system from stiff to nonstiff. The other equations in the stiff 
subsystem not affected by the transients choose low-order BDF methods. At 
this point the stiff equations that  choose the sixth order BDF methods with 
frequent step failures are tested for nonstiffness. Hence this discussion 
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suggests that varying the order componentwise while using the multistep 
methods can be helpful in the development of type-insensitive codes, because 
the order variations of the multistep methods for each equation in the 
presence of instabilities or transients with step failures is a first indication of 
the need to switch methods. 

We shall illustrate some of our points with a numerical example and in 
the process show some of the salient features of varying the order in a 
multistep method. The example used is the system 

~/1 = -10Yl  + 3Y2 

Y'2 = --3Yl -- 10y2 

Y'3 = - 4  Y3 

~ = - y 4  

= -0 .5y5  

= - 0.1 y~ 

y x ( 0 )  = y 2 ( 0 )  =  3(0) = y 4 ( 0 )  =  5(0) = y 6 ( 0 )  = 1,  

0~<x~<20,  

eigenvalues: -0 .1 ,  -0 .5 ,  - 1 ,  - 4 ,  - 1 0  ± i3, (given in Enright et al. [8]). 
We proceed to solve the above system by using the Adams PECE 

methods varying the order componentwise and then switching to a BDF 
method for any equation found to be stiff. The order-changing strategy is 
that  of Shampine and Gordon applied componentwise. Because the higher 
order explicit BDF methods are not zero stable, we restrict the order of the 
PECE BDF methods (as defined earlier) to six, i.e., the 6-step explicit BDF 
predictor and the 5-step BDF implicit corrector. This is despite the 6-step 
implicit BDF method being stiffly stable. Table 1 below gives the pair 
(k~, e~), i = 1, 2 , . . . ,  6, which are the order and the local error for the ith 
equation in the system at seven tabulated points denoted by ( x, h) where x 
is the said point and h the step size used. The tolerance used for this 
example is 10 -6. A number of the form a ( - b )  in the table will mean 
a ×  10 -b. 

The first tabulated point is the first step, therefore the order is 1 for all 
equations. The second tabulated point is just a few steps after the initial 
phase of the code, during which the order is raised at every step, hence the 
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constant order for all equations. The third point shows the early variation of 
the order for all the equations where the transients are still dominant. The 
fourth tabulated point shows that  the transients in the first two equations 
have almost died out and the step size is approaching instability and hence 
the first two equations choose lower order methods, viz., 3 and 4. However, 
the transients on the rest of the equation are still strong and therefore the 
high order. The II ekll here is due to the first equation, hence in a constant 
order k code the order for the system is 3. This will definitely affect the 
accuracy of the third equation onward. 

Just prior to the fifth tabulated point, x -- 5.68, stiffness tests as given in 
[11] are done on the first two equations. The rest of the equations are 
omitted from the tests because the high order indicates they are still in the 
nonstiff state. At x = 5.68 the first two equations are treated as stiff and 
solved using the BDF methods, while the rest still use the Adams methods. 
The sixth point at x = 18.60 shows that  now the third equation has the 
largest magnitude for the local error and determines the order in a constant 
order system, which is 7. This is not possible with the BDF methods used. 
Notice for the sixth and seventh points the orders of the BDF methods for 
the first two equations are 2 and 3. Had the whole system solved at these 
points with a constant order BDF method, then the order attained, deter- 
mined by the third equation, would be 6 (because the Adams method with 
smaller local error chooses order at least 6). This would unnecessarily push 
the order of the first two equations too high, implying higher overhead. 

Let us now consider the effect of the reintroduction of the transients on 
equations that  are already treated as stiff. For the sake of argument, let us 
assume the above problem is treated with the BDF methods at x = 5.68 
onward. Then for the first two equations the orders would be less or equal to 
four, but the rest of the equations would choose the BDF method of order 
six, indicating the transients are still strong in these equations. A constant 
order method would choose order ~< 4 for all equations, since the most 
dominant local error belongs to the first equation. This clearly nullifies the 
effect of the transients. It is not until x > 13, that  the local error of the 
third equation dominates and the order picks up. Variation of order compo- 
nentwise identifies the transients from the onstart  at x = 5.68. 

The above reasons, especially the last two, justify the need to vary the 
order for each equation in codes that  do partitioning or those that  are 
componentwise type-insensitive. 

3. THE ADAMS EXPLICIT  CASE 

Before proving the existence of absolute stability region when the order of 
the Adams explicit method is varied componentwise, we give the following 
lemma. 
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LEMMA. 
column vector. Then 

M. B. SULEIMAN ET AL. 

Let "A = (ral, r a 2 , . . .  , ras) an s X s matrix where ra i is an R ~ 

det rA = det( ~'al, "2ae,. . .  , a~) 
r = l  

where each rj ~ {1, . . . ,  m), j = 1 , . . . ,  s, that is the sum of all possible 
determinants of the matrices formed by having the j th column of elements  ray 
of rA, r = 1 , . . . ,  m which is a permutation of n ~. 

PROOF. Let G =  Er~l  rA 

de t (G)  = det , r ae , . . . ,  ~a m . 
\ r = l  r = l  r = l  

Then from the property of determinant, we have 

u s 

de t (G)  = ~ det(P~) 
i = l  

where P i = ( r l a l ,  r2a2 , . . . ,~as )  and r~aj, r j ~ { 1 , . . . , m } ,  j =  1 , . . . , s  any 
vector from the flh column of rA and has m possibilities from the m 
matrices. Because Pi had s elements of the vectors, therefore there are n s 
different matrices Pi. Hence the result. 

The general multistep method of solving (2.1) is given by 

o(  E)  x n = h ~ (  E)  L (3.1) 

where E is such that Ex~ = x~+l, the forward operator and 

k k 

p ( t )  = ~ a i t  k-1 and o-( t )  = ~ fl~t k-1 
i = O  i = 0  

An important characterization of (3.1) is the existence of the region of 
absolute stability. If h i is the eigenvalue of Of/O y, then the stability 
polynomial of (3.1) is given by (see [13], for a detailed discussion), 

n( t) = p(  t) - - h ( r (  t ) ,  -h = hA i. (3.2) 
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The absolute stability region of (3.1) is then defined to be the region in the 
h-plane for which the roots tj of (3.2) is such that It31 < 1, j = 1 , . . . ,  k; 
i =  1 , . . . ,  s. 

The standard approach for stability investigations is to consider the 
constant coefficients linear system 

y' = Ay ,  y ( a )  = ~?, y ~ R ~. (3.3) 

If (3.3) is to be solved for all equations in the systems by the explicit case of 
the Adams method in (3.1), then the backward difference formulation of the 
k-step method is given by 

k-1 
Yn+l - Yn - h E ~/iV~/~ = O, where ~/o = 1 (3.4) 

i=0 

and the associated stability polynomial given in (3.2) can be rearranged as 

L ( t )  = t k -  t k-1 - h h ( t  k-1 + T l t k - 2 ( t -  1) + T 2 t k - a ( t -  1) 2 + "-" 

"4- ~/ k_ l(  t -- x)k -  1), 

h an eigenvalue of A. 
Now let (3.3) be solved with different Adams methods for each equation 

in the system. Without loss of generality let the ith equation be solved by 
the kcste p Adams explicit method such that k i ~ k,~ for i < m. Hence 
k 1 = mini(ki). Then the backward difference formulation for solving (3.3) 
with the stated variable order multistep method is given by 

Yn+I = Yn + hA[ Yn + TIVYn -I- T2V2 yn + "'" "~- ~/~1_ 1 v K l - l y n ]  

+ hAl[T y l + ... y  -iyn] + . . .  

+ h A s _ i [ ~ / K ~ _ y k s - l y  n -4-"'" " ~ / k . - 1  v k ~ - l y n ] ,  (3.5) 

where 

A r  ~ 

0 0 ..- 0 

0 0 ..- 0 

ar+ 1,1 ar+ 1,2 "'" ar+l,  s 

as, 1 as, 2 "** a s ,  s 
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i.e., the matrix with the first r rows having zero elements and the last 
(s  - r) rows with elements of A. The stability polynomial associated with 
(3.5) is then given by Lk(t) = det(B) where k = k s and 

B = ( t  k -  t k - ~ ) I  - h A [ t  k-~ + T ~ t k - 2 ( t -  1) + ... 

+Tk _ l t k - k ~ ( t -  1) kl-1] 

- - h A l [ T k t k - k l - l ( t  - 1) kl + . . . + T k _ l t k - k ~ ( t  - 1)k~-l] ... 

- h A s _ l [ T k ( , _  t k - k ( ~ - l ) - l ( t  - 1 ) k ( ' - l ) - t - ' "  - t - T k _ l ( t  - 1)k- l ] .  

(3.6) 

Consider 

Bo(t)  = ( t  k -  t -1)I, (3.7) 

then the roots of det(B0(t)) are the spurious root 0 of multiplicity (k - 1) s 
and the nonspurious root 1 of multiplicity s. 

Now consider, 

Bl (  t ) = ( t k - t k - 1 ) I  - h A t  k-~ (3.8) 

Since the root of a polynomial is a continuous function of its coefficients and 
that the additional matrix term h a t  ~-1 in (3.8) is O(h); then for small h 
the nonspurious root of det(Bl(t))  = 0 is of the form t = 1 + b 1 h ÷ b 2 h 2 
+ " ' .  However, we note that the determinant det((Bl(t)) t  - ( k - l ) )  repre- 
sents the Euler's stability polynomial. Hence, the roots of det(B~(t)) = 0 are 
given by ( t k - 1 ) ~ ( t  - (1 + A~h)) ( t  - (1 + ) t 2 h ) ) . . . ( t  - (1 + A~h)) -- 0, 
where A~ are the eigenvalues of A. Therefore, the region of stability is given 
by I t l = l l + A l h l <  1 for i =  1 , . . . , s .  (In our discussion we ignore the 
spurious roots near t = 0 because they cannot violate the stability condition 
for small h). Next consider, 

B2( t ) = B l (  t ) - h A T l t k - 2 (  t -  1). (3.9) 

Again here the coefficients of the polynomial det(B2(t)) differ from det(Bl(t))  
by the contribution of the matrix of O(h), namely - h A T l t k - 2 ( t -  1). 
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Introduce the matrices Br(ci) , which are functions of the coefficients ci, 
where 

B~ ( ci) = c 1 I -  A = (b~l, . . .  , b~s ) 

( 12()) B~2 ( ci) = c 2 + c k -  1 I -  C 1 -[- ~1 C1 A = (b~l , . b~s ) 
1 1 " "  

 (ci) ((c3 2clc2(kl 2 

(c2(k 1 2 71Cl( k 1 A 

= (b* b s). 31~'' ' ,  

In general, let B~ (c~) the coefficient of h i in (3.11) be B* (c~) = (b~*l, . . - ,  br*s) 
where the b~* are s × 1 vectors. Then det(B2(t*)) - det(hB~l + h2B~ + 
h3B~ + ... ). Using the lemma given earlier, 

d e t ( B 2 ( t * ) )  = hS( ~ l )  + hfl2 + h2f13 + ... +hlf l l  + ... (3.11) 

where h~ l  -- det(hB*),  h 8+ ~2 is the sum of determinants  of each matr ix  
formed from combinations of (s  - 1) column vectors hb* m of B* and one 
from h2B~, h s+ 2 det(f13) is the sum of determinants  of each matr ix formed 
using combinations of vectors hb~m , h2b*m, and h 3 b ~  such tha t  the 
determinant  will factor out the h s+ 2 term, and so on for the others. 

For  det(B2(t))  -- 0, then necessarily the coefficients of the powers of h in 
(3.12) must  vanish. This implies fll = 0 or det (c l l  - A) must  vanish, i.e., 
c 1 -- A. We note tha t  f12 = 0 involves coefficients c 1 and c2, hence it will 
determine c 2. Similarly f13 = 0 will determine c3, and so on. Hence the 
contribution of the terms h A T 1 t k - 2 ( t  - 1) in (3.9) is at most  of O(h2). 
Similarly consider 

B3(t  ) = B2( t ) - A h 7 2 t k - 3 (  t -  1) 2" (3.13) 

Then again letting the root of (3.13) be 

t* --- 1 + dlh  + d2h 2 + d3h 3 + ... (3.14) 
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we have 

t*k-3( t* - 1 ) 2 =  d21h2 + ( 2 d l d 2 -  2d~ + 6d~( k -  2 ) )h3  + ... 
1 

Hence it is seen tha t  the  addit ion of the t e rm AhT2 t*k-3(t  * -- 1) 2 in (3.13) 
affects only the h 3 coefficients of B2(t*). We have, Ba(t*) = hB 1 + h2/~2 + 
h~B3 + ... where h~ = B~(d,) and h~(d,) = B~ (d,), /~2(d~) = B~2(d ~) and 
B3(d~) = B~' (d,)  - d~T2 m. 

Hence by  considering det(B3(t*))  = 0, we will get d 1 = q = )t, d e = c2, 
but  d 3 will in general differ from c a. In general, if 

Bk~+l = B k r -  hArTkrtk-k~-~( t -  1)k~ (3.15) 

where Bk~ are the te rms  in (3.6) up to 

h A r _ l T k _ l t k - k ~ ( t -  1)k~ -1 

and further  if the root of det( Bkr + 1 ) = 0 is of the form in (3.14), and writ ing 

det(Bk~+l)  = d e t ( h D  1 + h 2 D 2 + ... ), (3.16) 

then  the D m will consists of combinat ions  of di(i = 1 , . . . ,  m), T I ( i  = 

1 , . . . ,  m - 1), and the matr ices  A i associated with Ti. Expanding  the 
r ight-hand side of (3.16) by using the  previous l emma  and equat ing to zero 
the coefficients of h i of the  result ing expansion will determine the d,. 

If  for the s tabi l i ty  polynomial  det(Bkr), the principal  zero is of the form 
t* = 1 + ~ h +  d~2h 2 + ' " ,  then  it can be seen t h a t  d 1 = ~ ,  d 2 = 
~ . . . ,  dkr = ~ r  but  in general d k +1 ~ ~ +2. In other  words the addi- 

k + l  t ional t e rms  in (3.14), a mat r ix  of ~O(h r ~, affects the principal root at  
O(hk~+l). 

In this way it is seen tha t  for t of the form in (3.10) to be a principal root 
of de t (B)  = 0, then c 1 = A and the succeeding te rms  in (3.6) do not affect 
this conclusion. 

Hence for small h, the roots of Lk(t)  = 0 approx imate  to (9(h 2) the roots 
of the Euler  s tabil i ty polynomial  (3.8), thereby verifying tha t  a region of 
absolute s tabi l i ty  exists for the method  of (3.1). P E C E  with different orders 
for different equations in the sys tem will also have a region of stabili ty.  If 
one examines the s tabi l i ty  polynomial ,  one root (principal) will still be 
t = 1 + hh  + --- and the  rest tend to zero as h ~ 0. 
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In the case of a reliable code using different orders for each equation in a 
system, the code then chooses the orders to maximize step lengths either for 
optimum region or to satisfy the accuracy requirement, whichever is govern- 
ing the behavior of the integration process. This may lead to computational 
efficiency. 
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