UNIVERSITI PUTRA MALAYSIA

DISCOVERING DECISION ALGORITHM OF DISTANCE PROTECTIVE RELAY BASED ON ROUGH SET THEORY AND RULE QUALITY MEASURE

MOHAMMAD LUTFI OTHMAN

FK 2011 91
DISCOVERING DECISION ALGORITHM OF DISTANCE PROTECTIVE RELAY BASED ON ROUGH SET THEORY AND RULE QUALITY MEASURE

MOHAMMAD LUTFI OTHMAN

DOCTOR OF PHILOSOPHY
UNIVERSITI PUTRA MALAYSIA

2011
DISCOVERING DECISION ALGORITHM OF DISTANCE PROTECTIVE RELAY BASED ON ROUGH SET THEORY AND RULE QUALITY MEASURE

By

MOHAMMAD LUTFI OTHMAN

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirements for the Degree of Doctor of Philosophy

August 2011
DEDICATION

I would like to dedicate this project to my beloved family, all my supervisors and lecturers in the Department of Electrical and Electronic Engineering and friends. Their guidance and relentless support have been a great inspiration to the realization of this project.
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the degree of Doctor of Philosophy

DISCOVERING DECISION ALGORITHM OF DISTANCE PROTECTIVE RELAY BASED ON ROUGH SET THEORY AND RULE QUALITY MEASURE

By

MOHAMMAD LUTFI OTHMAN

August 2011

Chair: Professor Ishak Aris, PhD
Faculty: Engineering

A distance protective relay performance analysis is only feasible when the hypothesis of expected relay operation characteristics as decision rules is established as the knowledge base. This has been meticulously done by soliciting the relay knowledge domain from protection experts who are usually constrained by their experience and expertise, strenuously manually perusing tremendous amount of data in event report and traditionally relying on such intelligent electronic devices as digital fault recorders, sequence of event recorders and SCADA’s remote terminal units that are lacked of detailed protection information. Thus, this thesis addresses these issues with the objective of intelligently divulging the knowledge hidden in the recorded event report at a relay device level using a data mining strategy based on Rough Set Theory, Genetic Algorithm and Rule Quality Measure under supervised learning within the framework of Knowledge Discovery in Database (KDD) in order to discover the relay’s decision algorithm (prediction rules) and, subsequently, the association rule. The KDD approach was applied on a simulated event report
recording ‘extracted’ from a numerical distance relay that had been modeled to emulate an actual distance protective relay device used by TNB, a Malaysian utility company. The high prediction accuracy rate and the close-to-unity area under curve (AUC) value of ROC curve of the discovered relay decision algorithm (prediction rules) from the Rough-Set-Theory-and-Genetic-Algorithm data mining verified the algorithm’s generalized ability to predict as well as discriminate future unknown-trip-status relay events. Subsequently, by post-pruning the relay prediction rules using a Rule Quality Measure known as G^2 Likelihood Ratio Statistic as well as the rule-interestingness-and-importance-judgment, a rationalized relay association rule had been discovered. The relay association rule had also been verified as being a reliable hypothesis of relay operation characteristics that was much sought after and easily understood by the protection engineers. The discovered decision algorithm and association rule from the Rough-Set based data mining had been compared with and successfully validated by those discovered using the benchmarking Decision-Tree based data mining strategy. With the association rule in hand, a distance relay performance analysis Expert System called Protective Relay Analysis System (PRAY) had been designed. PRAY had successfully demonstrated how useful it was in implementing the discovered hypothesis as the Expert System’s rule base in the validation and diagnosis analyses of distance protective relay operations and misoperations.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

MENEMUI ALGORITMA KEPUTUSAN GEGANTI PELINDUNG JARAK BERDASARKAN KEPADA TEORI SET KASAR DAN UKURAN KUALITI PERATURAN

Oleh

MOHAMMAD LUTFI OTHMAN

August 2011

Pengerusi: Profesor Ishak Aris, PhD

Fakulti: Kejuruteraan

Analisis prestasi geganti pelindung jarak hanya terlaksana apabila hipotesis tentang ciri operasi geganti yang dijangka berbentuk peraturan keputusan ditentukan sebagai pangkalan pengetahuan. Ini telah dilakukan dengan teliti dengan mencari domain pengetahuan geganti dari pakar pelindung yang biasanya mempunyai pengalaman and kepakaran yang terhad, membaca dengan teliti jumlah data yang banyak di dalam laporan peristiwa secara manual yang membebankan dan pergantungan kepada peranti-peranti elektronik cerdas seperti perakam rosak digital, perakam rentetan peristiwa dan unit terminal jauh SCADA mempunyai informasi pelindungan yang terperinci yang tidak mencukupi. Oleh itu, tesis ini menumpukan perhatian kepada isu-isu ini dengan objektif untuk mendedahkan secara cerdas pengetahuan yang terlinding di dalam laporan peristiwa yang dirakam pada peringkat peranti geganti dengan menggunakan strategi perlombongan data berdasarkan kepada Teori Set Kasar, Algoritma Genetik dan Ukuran Kualiti Peraturan di bawah pembelajaran berpenyelia di dalam linkungan rangka kerja...
ACKNOWLEDGEMENTS

First and foremost, I would like to thank Professor Dr. Ishak Aris, my supervisory committee chairman, for giving me this opportunity to embark on the project and guiding me throughout this exciting challenge. I would also like to thank my other supervisors for commenting and reviewing on this work: Associate Professor Dr. Senan Mahmod Abdullah, Dr. Md Liakot Ali and Dr. Mohammad Ridzal Othman. I appreciate their knowledge, collaborations and recommendations in making this project a dream come true.

I greatly appreciate the Malaysian Ministry of Higher Education for sponsoring the entire tenure of my study.

I am deeply grateful to protection experts from Tenaga Nasional Berhad, particularly Mr. Hairussaleh Osman, for his precious assistance rendered in providing invaluable information regarding the technical requirements in modeling the distance protective relay based on AREVA and SEL and in modeling the transmission line, all based on the practice by CIGRE as adopted by TNB.

Last but not least, particular thanks to my wife Dr. Raja Zahratul Azma Raja Sabudin, for working side by side in her own demanding career and encouraging me to persevere and devote my time whole-heartedly with enthusiasm in completing this laborious endeavor. And of course my parents and kids, Muhammad Naufal, Muhammad Naqeeb, Nuur Nuwairah, Nuur Nadheerah and Nuur Nazeehah, their patience is my greatest motivation.
I certify that a Thesis Examination Committee has met on the 23rd August 2011 to conduct the final examination of Mohammad Lutfi Othman on his thesis entitled "Discovering Decision Algorithm of Distance Protective Relay Using Data Mining Approach Based on Rough Set Theory and Rule Quality Measure " in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

SAMSUL BAHARI MOHD NOOR, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

MOHD ZAINAL ABIDIN ABDUL KADIR, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Internal Examiner)

CHANDIMA GOMES, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Internal Examiner)

LIEW AH CHOY, PhD
Professor
Faculty of Engineering
National University of Singapore
Singapore
(External Examiner)

NORITAH OMAR, PhD
Associate Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Ishak Aris, PhD
Professor
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Senan Mahmod Abdullah, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Member)

Md Liakot Ali, PhD
Institute of Information and Communication Technology
Bangladesh University of Engineering and Technology
(Member)

Mohammad Ridzal Othman, PhD
Engineering Department
Tenaga Nasional Berhad
(Member)

HASANAH MOHD GHAZALI, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously and is not concurrently submitted for any other degree at Universiti Putra Malaysia or other institutions.

MOHAMMAD LUTFI OTHMAN

Date: 23rd August 2011
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>v</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>vi</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>viii</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xvii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xxi</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxvii</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION

1.1 Background

1.1.1 Protective Relay Functions

1.1.2 Protective Relay Performance Issues

1.1.3 Problems Resulting from Incorrect Operations of Protective Relays

1.1.4 Analysis Strategy of Protective Relay Performance

1.1.5 Retrospective Analysis of Protective Relay Performance Using Recorded Data

1.1.6 Intelligent Techniques and Recorded Protection Data Integration: The Current Trends

1.2 Hypothesis of Research

1.3 Problems in Protective Relay Performance Analysis (The Problem Statements)

1.4 Objectives of Research

1.5 Scopes of Research

1.6 Contributions of Research

1.7 Thesis Layout

2 LITERATURE REVIEW

2.1 Utility Perspective of Protective Relay Performance Analysis: Why Is Analysis Crucial?

2.2 How Can Protective Relay Data be Useful?

2.3 Event Report

2.4 Fundamentals of Distance Protective Relay

2.5 Overview of Current Implementation Techniques in Protection Operation Analysis and Hypothesization

2.5.1 Computational Intelligence plus Intelligent Electronic Devices: The State-of-the-Art Synergy

2.5.2 Analysis of Protection Operation Using Expert Systems (ES)
2.5.3 Analysis of Protection Operation Using Artificial Neural Networks (ANN) 31
2.5.4 Analysis of Protection Operation Using Fuzzy Logic (FL) 33
2.5.5 Analysis of Protection Operation Using Genetic Algorithms (GA) 34
2.5.6 Analysis of Protection Operation Using Event (Fault) Tree Analysis (ETA) 35
2.5.7 Analysis of Protection Operation Using Model-Based Reasoning (MBR) 36

2.6 Objectives in the Protective Relay Performance Analysis 37

2.7 Approaches in Hypothesization of Distance Protective Relay Operation Characteristics 39
2.7.1 Reliance on Only Digital Protective Relay for Protection Performance Analysis 39
2.7.2 Adoption of Relay Information System in Rough Set Based Analysis? 41
2.7.3 Knowledge Discovery in Databases (KDD) in Analyzing Digital Distance Protective Relay 43
2.7.4 Computational Intelligence in Data Mining for Knowledge Discovery: Potential Usage of Rough Set Theory, Genetic Algorithm and Rule Quality Measure 46
2.7.4.1 Characteristics of Rough Set Theory: Their Benefits to Protective Relay Data Mining 47
2.7.4.2 Characteristics of Genetic Algorithm: Their Benefits to Protective Relay Data Mining 48
2.7.4.3 Characteristics of Rule Quality Measure: Their Benefits to Protective Relay Data Mining 49
2.7.4.4 Rough Set Theory, Genetic Algorithm and Rule Quality Measure in Hybrid Data Mining Approach of Hypothesizing Behavior of Protective Relay Operations 50
2.7.5 Advantages of Rough Set Theory over Other Intelligent Techniques 50
2.7.6 Review of Rough Set Theory Applications, with or without Genetic Algorithm 51

2.8 Fundamental Concept of Rough Set Theory in the Perspective of Protective Relay Operation Analysis 52
2.8.1 Indiscernibility Relation of Relay Decision System 53
2.8.2 Approximation of Sets of Relay Decision System 54
2.8.3 Reduction of Protective Relay Attributes – the Concept of Reduct 55
2.8.4 Protective Relay Event Report Interpreted As Decision Rules 56
2.8.5 Tutorial on Protective Relay Decision Table and Its Analysis for Rule Generation Using Rough Set Theory 58

2.9 Genetic Algorithm in the Perspective of Protective Relay Operation Analysis 58
2.9.1 Approximation of Reducts Using Genetic Algorithm 58
2.10 Rule Quality Measure in the Perspective of Protective Relay Operation Analysis 60
2.11 Software/Hardware to Be Used in the Research 61
2.12 Summary 63

3 METHODOLOGY AND PROCEDURES 67
3.1 Introduction 67
3.2 Transmission Network Modeling and Simulation 71
3.3 Distance Protective Relay Modeling and Simulation 81
 3.3.1 Basic Distance Protection (21P/21G) 87
 3.3.2 Phase-Phase Quadrilateral Distance Elements (21P) 87
 3.3.3 Phase-Ground Quadrilateral Distance Elements (21G) 92
 3.3.4 Coordination between Zones 97
 3.3.5 Zone Reach Concept and Simulation Settings 97
 3.3.6 Resistive Reach (R_{ph}) Concept and Simulation Settings for Phase-Phase Quadrilateral Distance Elements (21P) 101
 3.3.7 Resistive Reach (R_{g}) Concept and Simulation Settings for Phase-Ground Quadrilateral Distance Elements (21G) 105
 3.3.8 Creating Phase and Ground Quadrilateral Distance Elements 108
 3.3.9 Zone Time Delay Settings 112
 3.3.10 Distance Protection Schemes 114
 3.3.10.1 Basic Distance Protection Schemes (21P Or 21G) 114
 3.3.11 Fault Type Identification Scheme (FTIS) Element 123
 3.3.12 Other Protection-Specific or Protection-Support Modules 134
3.4 Playback of Simulated Transient Fault Signals into Protective Relay Device for Validation of Relay Model 134
3.5 Data Preparation 138
 3.5.1 Data Selection 140
 3.5.2 Data Preprocessing 146
 3.5.3 Data Transformation 148
 3.5.3.1 Constructing and Discretizing Analog Numerical Attributes 149
 3.5.3.2 Constructing and Simplifying Categorical and Binary Attributes 161
3.6 Data Mining in Discovering CD-Decision Algorithm 162
 3.6.1 Different Usages of CD-Decision Algorithm 163
 3.6.2 Data Mining Analysis Steps 168
 3.6.3 Discovering Reducts with Minimal Hitting Sets 171
 3.6.4 Relay CD-Decision Rules Discovery Measures 176
 3.6.4.1 Relay Rule Quality Measure 176
 3.6.4.2 Relay Rule Interestingness Measure 178
 3.6.4.3 Relay Rule Importance Measure 182
 3.6.5 Evaluation of Relay CD-Decision Algorithm 183
 3.6.5.1 Cross Validation of CD-Decision Algorithm 185
 3.6.5.2 Estimation of Classification Performance of Relay CD-Decision Algorithm by Testing 186
3.7 Comparison of Rule Extraction Capability of Rough Set Theory and Other Techniques: Special Focus on Decision Tree as Validating Technique
3.7.1 Theoretical Background of Decision Tree in the Perspective of Relay Operation Analysis 202
3.7.2 Discovering Relay CD-Decision Algorithm Using Decision Tree Technique 205
3.8 Development of Protective Relay Analysis System (PRAY) in Implementing Discovered Decision Algorithm 211
3.8.1 PRAY Inputs 216
3.8.2 PRAY Reasoning Strategy for Validation and Diagnosis 222
3.9 Summary 231

4 RESULTS AND DISCUSSIONS
4.1 Introduction 234
4.2 Results of Transmission Network Simulation and Distance Protective Relay Modeling 235
4.3 Validation of Modeled Distance Protective Relay Operations 248
4.4 Distance Protective Relay Operations Analysis Based on Rough Set Theory 251
4.4.1 Discovering Knowledge of Relay Trip Assertion 257
4.4.2 Discovering Knowledge of Impedance Element Activation and Fault Characteristics 259
4.4.3 Discovering Knowledge of Circuit Breaker Operation 267
4.4.4 Analysis of Overall Approximation of Distance Relay Decision System DS 273
4.5 Generation of Reducts and Relay CD-Decision Algorithm 276
4.5.1 Approximation of Reducts with Minimal Approximate Hitting Sets Using Genetic Algorithm 283
4.5.2 Generation of Relay CD-Decision Algorithm Using Discovered Reducts 291
4.5.3 Evaluation of Prediction/Classification Performance of Discovered CD-Decision Algorithm 299
4.6 Generation of Relay CD-Association Rules as a Domain Analysis (Relay Operation Hypothesization) 312
4.6.1 Interpretation of Discovered CD-Association Rules $C \Rightarrow assoc D$ in Domain Analysis of Distance Protective Relay Operations 321
4.7 Discovering Relay CD-Decision Algorithm Using Decision Tree Technique 332
4.7.1 Evaluation of the Prediction Performance of Decision-Tree Induced Relay CD-Decision Algorithm and its Validation of the Rough-Set Induced Algorithm 342
4.7.2 Discovering Relay CD-Association Rules from Decision-Tree Induced Relay CD-Decision Algorithm 347
4.7.3 Justification of the Usefulness of Rough-Set Induced Relay Rules over Decision-Tree Induced Relay Rules 351
4.7.4 Comparison of Relay CD-Decision Algorithm Performance Evaluations and CD-Association Rules between Decision Tree and Rough Set Analyses 354

4.8 Protective Relay Analysis System (PRAY) Demonstration Results 355

4.9 Summary 365

5 CONCLUSION 368

5.1 Conclusion 368

5.2 Contributions of Research 371

5.3 Recommendation for Future Works 373

REFERENCES 376

APPENDICES 393

APPENDIX A 393
A.1 Tutorial on Protective Relay Decision Table and Its Analysis for Rule Generation Using Rough Set Theory 393

APPENDIX B 394
B.1 Modeling Other Protection-Specific or Protection-Support Modules of AREVA relay 394

APPENDIX C 395
C.1 DIAdem Visual Basics Scripts for Distance Protective Relay Data Preparation 395

APPENDIX D 396
D.1 Plots of AREVA MiCOM P441 Operations upon Secondary Injections of Transient Fault Voltages and Currents 396

APPENDIX E 399
E.1 Pre Data-Preparation DS 399

APPENDIX F 403
F.1 Post Data-Preparation DS 403

APPENDIX G 414
G.1 Distance protective relay parameter settings 414

APPENDIX H 421
H.1 Contents of Command Script for k-Fold Cross Validation of CD-Prediction Algorithm 421

APPENDIX I 423
I.1 Test Output of K-Fold CV for Confusion Matrix Construction 423

APPENDIX J 426
J.1 Test Output of K-Fold CV for ROC Curve Construction 426

APPENDIX K 428
K.1 Test Output of K-Fold CV for Calibration Plot Construction 428

APPENDIX L 430
L.1 CD-Prediction Rules Generated in the 10th Training Iteration 430

APPENDIX M 431
M.1 Rule Quality G2 Measures of CD-decision algorithm 431

APPENDIX N 433
N.1 TextViewer Output after the ClassifierPerformanceEvaluator 433

APPENDIX O 434
O.1 *GraphViewer* and *TextViewer* after *J48* and *CrossValidationFoldMaker* 434

APPENDIX P 436

P.1 *ModelPerformanceChart* Output after the *ClassifierPerformanceEvaluator* 436

BIODATA OF STUDENT 438

LIST OF PUBLICATIONS 439