

UNIVERSITI PUTRA MALAYSIA

DISCOVERING DECISION ALGORITHM OF DISTANCE PROTECTIVE RELAY BASED ON ROUGH SET THEORY AND RULE QUALITY MEASURE

MOHAMMAD LUTFI OTHMAN

FK 2011 91

DISCOVERING DECISION ALGORITHM OF DISTANCE PROTECTIVE RELAY BASED ON ROUGH SET THEORY AND RULE QUALITY MEASURE

MOHAMMAD LUTFI OTHMAN

DOCTOR OF PHILOSOPHY UNIVERSITI PUTRA MALAYSIA

2011

DISCOVERING DECISION ALGORITHM OF DISTANCE PROTECTIVE RELAY BASED ON ROUGH SET THEORY AND RULE QUALITY MEASURE

By

MOHAMMAD LUTFI OTHMAN

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirements for the Degree of Doctor of Philosophy

August 2011

DEDICATION

I would like to dedicate this project to my beloved family, all my supervisors and lecturers in the Department of Electrical and Electronic Engineering and friends. Their guidance and relentless support have been a great inspiration to the realization of this project.

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the degree of Doctor of Philosophy

DISCOVERING DECISION ALGORITHM OF DISTANCE PROTECTIVE RELAY BASED ON ROUGH SET THEORY AND RULE QUALITY MEASURE

By

MOHAMMAD LUTFI OTHMAN

August 2011

Chair: Professor Ishak Aris, PhD

Faculty: Engineering

A distance protective relay performance analysis is only feasible when the hypothesis of expected relay operation characteristics as decision rules is established as the knowledge base. This has been meticulously done by soliciting the relay knowledge domain from protection experts who are usually constrained by their experience and expertise, strenuously manually perusing tremendous amount of data in event report and traditionally relying on such intelligent electronic devices as digital fault recorders, sequence of event recorders and SCADA's remote terminal units that are lacked of detailed protection information. Thus, this thesis addresses these issues with the objective of intelligently divulging the knowledge hidden in the recorded event report at a relay device level using a data mining strategy based on Rough Set Theory, Genetic Algorithm and Rule Quality Measure under supervised learning within the framework of Knowledge Discovery in Database (KDD) in order to discover the relay's decision algorithm (prediction rules) and, subsequently, the

recording 'extracted' from a numerical distance relay that had been modeled to emulate an actual distance protective relay device used by TNB, a Malaysian utility company. The high prediction accuracy rate and the close-to-unity area under curve (AUC) value of ROC curve of the discovered relay decision algorithm (prediction rules) from the Rough-Set-Theory-and-Genetic-Algorithm data mining verified the algorithm's generalized ability to predict as well as discriminate future unknowntrip-status relay events. Subsequently, by post-pruning the relay prediction rules using a Rule Quality Measure known as G2 Likelihood Ratio Statistic as well as the rule-interestingness-and-importance-judgment, a rationalized relay association rule had been discovered. The relay association rule had also been verified as being a reliable hypothesis of relay operation characteristics that was much sought after and easily understood by the protection engineers. The discovered decision algorithm and association rule from the Rough-Set based data mining had been compared with and successfully validated by those discovered using the benchmarking Decision-Tree based data mining strategy. With the association rule in hand, a distance relay performance analysis Expert System called Protective Relay Analysis System (PRAY) had been designed. PRAY had successfully demonstrated how useful it was in implementing the discovered hypothesis as the Expert System's rule base in the validation and diagnosis analyses of distance protective relay operations and misoperations.

iv

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

MENEMUI ALGORITMA KEPUTUSAN GEGANTI PELINDUNG JARAK BERDASARKAN KEPADA TEORI SET KASAR DAN UKURAN KUALITI PERATURAN

Oleh

MOHAMMAD LUTFI OTHMAN

August 2011

Pengerusi: Profesor Ishak Aris, PhD

Fakulti: Kejuruteraan

Analisis prestasi geganti pelindung jarak hanya terlaksana apabila hipotesis tentang ciri operasi geganti yang dijangka berbentuk peraturan keputusan ditentukan sebagai pangkalan pengetahuan. Ini telah dilakukan dengan teliti dengan mencari domain pengetahuan geganti dari pakar pelindung yang biasanya mempunyai pengalaman and kepakaran yang terhad, membaca dengan teliti jumlah data yang banyak di dalam laporan peristiwa secara manual yang membebankan dan pergantungan kepada peranti-peranti elektronik cerdas seperti perakam rosak digital, perakam rentetan peristiwa dan unit terminal jauh SCADA mempunyai informasi pelindungan yang terperinci yang tidak mencukupi. Oleh itu, tesis ini menumpukan perhatian kepada isu-isu ini dengan objektif untuk mendedahkan secara cerdas pengetahuan yang terlinding di dalam laporan peristiwa yang dirakam pada peringkat peranti geganti dengan menggunakan strategi perlombongan data berdasarkan kepada Teori Set Kasar, Algoritma Genetik dan Ukuran Kualiti Peraturan di bawah pembelajaran berpenyelia di dalam linkungan rangka kerja Penemuan Pengetahuan dalam Pengkalan Data (PPPD) untuk menemui algoritma keputusan geganti (peraturan-peraturan ramalan) dan berikutnya peraturan pertalian. Pendekatan PPPD telah diaplikasikan ke atas rakaman laporan peristiwa simulasi yang 'diekstrak' dari geganti jarak berangka yang telah dimodel lagak sebagai peranti geganti pelindung jarak yang sebenar yang digunakan oleh TNB, sebuah syarikat utiliti Malaysia. Kadar kejituan ramalan yang tinggi and nilai luas di bawah lengkung (LBL) ROC hampir-satu algoritma keputusan (peraturan-peraturan ramalan) geganti yang ditemui dari perlombongan data Teori-Set-Kasar-Algoritma-Genetik mengesahkan kebolehan algoritma tersebut meramal dan mendiskriminasi peristiwa geganti masa depan yang tidak diketahui status tripnya. Kemudiannya, melalui cantasan-selepas peraturan-peraturan ramalan geganti tersebut dengan menggunakan Ukuran Kualiti Peraturan yang dikenali sebagai Statistik Nisbah Kebolehjadian G2 dan juga pertimbangan-kepenarikan-dan-kepentingan-peraturan, maka peraturan pertalian yang terasional telah ditemui. Peraturan pertalian tersebut juga telah disahkan sebagai hipotesis boleh percaya ciri-ciri operasi geganti yang dicari dan mudah difahami oleh jurutera-jurutera pelindungan. Algoritma keputusan and peraturan pertalian yang ditemui dari perlombongan data berdasarkan Set Kasar telah dibandingkan dan berjaya disahkan dengan apa yang telah ditemui menggunakan strategi perlombongan data berdasarkan Pokok-Keputusan penandaan aras. Dengan peraturan pertalian di dalam genggaman, Sistem Pakar analisis prestasi geganti jarak yang dikenali sebagai Sistem Analisis Geganti Pelindung (SAGP) telah direka bentuk. SAGP telah berjaya menunjuk ajar betapa bergunanya mengimplimentasi hipotesis yang telah ditemui sebagai pengkalan peraturan Sistem Pakar di dalam analisis mengesah dan mendiagnosis operasi geganti yang betul dan yang salah.

ACKNOWLEDGEMENTS

First and foremost, I would like to thank Professor Dr. Ishak Aris, my supervisory committee chairman, for giving me this opportunity to embark on the project and guiding me throughout this exciting challenge. I would also like to thank my other supervisors for commenting and reviewing on this work: Associate Professor Dr. Senan Mahmod Abdullah, Dr. Md Liakot Ali and Dr. Mohammad Ridzal Othman. I appreciate their knowledge, collaborations and recommendations in making this project a dream come true.

I greatly appreciate the Malaysian Ministry of Higher Education for sponsoring the entire tenure of my study.

I am deeply grateful to protection experts from Tenaga Nasional Berhad, particulary Mr. Hairussaleh Osman, for his precious assistance rendered in providing invaluable information regarding the technical requirements in modeling the distance protective relay based on AREVA and SEL and in modeling the transmission line, all based on the practice by CIGRE as adopted by TNB.

Last but not least, particular thanks to my wife Dr. Raja Zahratul Azma Raja Sabudin, for working side by side in her own demanding carreer and encouraging me to persevere and devote my time whole-heartedly with enthusiasm in completing this laborious endeavor. And of course my parents and kids, Muhammad Naufal, Muhammad Naqeeb, Nuur Nuwairah, Nuur Nadheerah and Nuur Nazeehah, their patience is my greatest motivation. I certify that a Thesis Examination Committee has met on the 23rd August 2011 to conduct the final examination of Mohammad Lutfi Othman on his thesis entitled "Discovering Decision Algorithm of Distance Protective Relay Using Data Mining Approach Based on Rough Set Theory and Rule Quality Measure " in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

SAMSUL BAHARI MOHD NOOR, PhD

Associate Professor Faculty of Engineering Universiti Putra Malaysia (Chairman)

MOHD ZAINAL ABIDIN ABDUL KADIR, PhD

Associate Professor Faculty of Engineering Universiti Putra Malaysia (Internal Examiner)

CHANDIMA GOMES, PhD

Associate Professor Faculty of Engineering Universiti Putra Malaysia (Internal Examiner)

LIEW AH CHOY, PhD

Professor Faculty of Engineering National University of Singapore Singapore (External Examiner)

NORITAH OMAR, PhD

Associate Professor and Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date:

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Ishak Aris, PhD

Professor Faculty of Engineering Universiti Putra Malaysia (Chairman)

Senan Mahmod Abdullah, PhD

Associate Professor Faculty of Engineering Universiti Putra Malaysia (Member)

Md Liakot Ali, PhD

Institute of Information and Communication Technology Bangladesh University of Engineering and Technology (Member)

Mohammad Ridzal Othman, PhD

Engineering Department Tenaga Nasional Berhad (Member)

HASANAH MOHD GHAZALI, PhD

Professor and Dean School of Graduate Studies Universiti Putra Malaysia

Date:

DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously and is not concurrently submitted for any other degree at Universiti Putra Malaysia or other institutions.

TABLE OF CONTENTS

DED	ICATIO	N	ii
ABS	FRACT		iii
ABST	ГRAK		v
ACK	NOWLE	DGEMENT	vii
APPH	ROVAL		viii
DEC	LARATI	ON	x
LIST	OF TAE	BLES	xvii
LIST	OF FIG	URES	xxi
LIST	OF ABE	BREVIATIONS	xvii
CHA	PTER		
1	INTR	ODUCTION	1
	1.1	Background	1
		1.1.1 Protective Relay Functions	1
		1.1.2 Protective Relay Performance Issues	2
		1.1.3 Problems Resulting from Incorrect Operations of	
		Protective Relays	3
		1.1.4 Analysis Strategy of Protective Relay Performance	4
		1.1.5 Retrospective Analysis of Protective Relay Performance	e
		Using Recorded Data	7
		1.1.6 Intelligent Techniques and Recorded Protection Data	
		Integration: The Current Trends	9
	1.2	Hypothesis of Research	11
	1.3	Problems in Protective Relay Performance Analysis (The Proble	m
		Statements)	11
	1.4	Objectives of Research	13
	1.5	Scopes of Research	14
	1.6	Contributions of Research	16
	1.7	Thesis Layout	18
2	LITE	RATURE REVIEW	21
	2.1	Utility Perspective of Protective Relay Performance Analysis: W	Vhy
		Is Analysis Crucial?	21
	2.2	How Can Protective Relay Data be Useful?	22
	2.3	Event Report	22
	2.4	Fundamentals of Distance Protective Relay	25
	2.5	Overview of Current Implementation Techniques in Protection	
		Operation Analysis and Hypothesization	28
		2.5.1 Computational Intelligence plus Intelligent Electronic	

- 2.5.1 Computational Intelligence plus Intelligent Electronic Devices: The State-of-the-Art Synergy 29
 2.5.2 Analysis of Protection Operation Using Expert Systems (ES) 30
 - xi

Page

2.5.	Analysis of Protection Operation Using Artificial Neural
	Networks (ANN) 31
2.5.	4 Analysis of Protection Operation Using Fuzzy Logic (FL) 33
2.5.	5 Analysis of Protection Operation Using Genetic
	Algorithms (GA) 34
2.5.	6 Analysis of Protection Operation Using Event (Fault) Tree Analysis (ETA) 35
2.5	7 Analysis of Protection Operation Using Model-Based
2.5.	Reasoning (MBR) 36
2.6 Obj	ectives in the Protective Relay Performance Analysis 37
2.7 App	roaches in Hypothesization of Distance Protective Relay
Ope	ration Characteristics 39
2.7.	1 Reliance on Only Digital Protective Relay for Protection
	Performance Analysis 39
2.7.	2 Adoption of Relay Information System in Rough Set Based
27	Knowledge Discovery in Databases (KDD) in Analyzing
2.1.	Digital Distance Protective Relay
27.	4 Computational Intelligence in Data Mining for Knowledge
	Discovery: Potential Usage of Rough Set Theory, Genetic
	Algorithm and Rule Quality Measure 46
	2.7.4.1 Characteristics of Rough Set Theory: Their
	Benefits to Protective Relay Data Mining 47
	2.7.4.2 Characteristics of Genetic Algorithm: Their
	Benefits to Protective Relay Data Mining 48
	2.7.4.3 Characteristics of Rule Quality Measure: Their
	Benefits to Protective Relay Data Mining 49
	2.7.4.4 Rough Set Theory, Genetic Algorithm and Rule
	Quality Measure in Hybrid Data Mining
	Approach of Hypothesizing Behavior of
	Protective Relay Operations 50
2.7.	5 Advantages of Rough Set Theory over Other Intelligent
2.7	1 echniques 50
2.7.	5 Review of Rough Set Theory Applications, with or without
2.8 Fun	Jamontal Concept of Pough Sat Theory in the Derenactive of
2.8 Prof	ective Relay Operation Analysis
28	I Indiscernibility Relation of Relay Decision System 53
2.0.	Approximation of Sets of Relay Decision System 55
2.0.	Reduction of Protective Relay Attributes – the Concept of
	Reduct 55
2.8.	4 Protective Relay Event Report Interpreted As Decision Rules 56
2.8.	5 Tutorial on Protective Relay Decision Table and Its
	Analysis for Rule Generation Using Rough Set Theory 58
2.9 Gen	etic Algorithm in the Perspective of Protective Relay Operation
Ana	lysis 58
2.9.	Approximation of Reducts Using Genetic Algorithm 58
	xii

	2.10	Rule Quality Measure in the Perspective of Protective Relay			
		Operation Analysis	60		
	2.11	Software/Hardware to Be Used in the Research	61		
	2.12	Summary	63		
3	METHODOLOGY AND PROCEDURES				
	3.1	Introduction	67		
	3.2	Transmission Network Modeling and Simulation	71		
	3.3	Distance Protective Relay Modeling and Simulation	81		
		3.3.1 Basic Distance Protection (21P/21G)	87		
		3.3.2 Phase-Phase Quadrilateral Distance Elements (21	P) 87		
		3.3.3 Phase-Ground Quadrilateral Distance Elements (2	21G) 92		
		3.3.4 Coordination between Zones	97		
		3.3.5 Zone Reach Concept and Simulation Settings	97		
		3.3.6 Resistive Reach (R _{ph}) Concept and Simulation Se	ttings for		
		Phase-Phase Quadrilateral Distance Elements (21	P) 101		
		3.3.7 Resistive Reach (Rg) Concept and Simulation Set	tings for		
		Phase-Ground Quadrilateral Distance Elements (2	21G) 105		
		3.3.8 Creating Phase and Ground Quadrilateral Distance	e		
		Elements	108		
		3.3.9 Zone Time Delay Settings	112		
		3.3.10 Distance Protection Schemes	114		
		3.3.10.1 Basic Distance Protection Schemes (21)	? Or 21G)		
			114		
		3.3.11 Fault Type Identification Scheme (FTIS) Elemen	t 123		
		3.3.12 Other Protection-Specific or Protection-Support	viodules		
	2.4	Displace of Cimulated Transient Fault Signals into Drotes	134 tive Delev		
	3.4] 2.5	Device for Validation of Dalay Model			
		Device for valuation of Kelay Model	134		
	5.5	3.5.1 Data Selection	138		
		3.5.2 Data Preprocessing	140		
		3.5.2 Data Transformation	140		
		3.5.3 Data Hanstormation 3.5.3.1 Constructing and Discretizing Analog N	Jumerical		
		Attributes	1/19		
		3532 Constructing and Simplifying Categoric	al and		
		Binary Attributes	161		
	3.6	Data Mining in Discovering <i>CD</i> -Decision Algorithm	162		
		3.6.1 Different Usages of <i>CD</i> -Decision Algorithm	163		
		3.6.2 Data Mining Analysis Steps	168		
		3.6.3 Discovering Reducts with Minimal Hitting Sets	171		
		3.6.4 Relay <i>CD</i> -Decision Rules Discovery Measures	176		
		3.6.4.1 Relay Rule Quality Measure	176		
		3.6.4.2 Relay Rule Interestingness Measure	178		
		3.6.4.3 Relay Rule Importance Measure	182		
		3.6.5 Evaluation of Relay <i>CD</i> -Decision Algorithm	183		
		3.6.5.1 Cross Validation of <i>CD</i> -Decision Algor	ithm 185		
		Relay CD-Decision Algorithm by Testi	ng 186		
		Relay CD-Decision Augorithm by Testh	-5 100		
			λIII		

	3.7	Comparison of Rule Extraction Capability of Rough Set Theory and Other Techniques: Special Focus on Decision Tree as		
		Validating Technique	201	
		3.7.1 Theoretical Background of Decision Tree in the	201	
		Perspective of Relay Operation Analysis	202	
		3.7.2 Discovering Relay <i>CD</i> -Decision Algorithm Using Deci	ision	
		Tree Technique	205	
	38	Development of Protective Relay Analysis System (PRAY) in	205	
	5.0	Implementing Discovered Decision Algorithm	211	
		3.8.1 PRAV Inputs	216	
		3.8.2 PRAY Reasoning Strategy for Validation and Diagnosi	S	
		5.0.2 There is a strategy for variation and Diagnos	222	
	39	Summary	231	
	5.7	Summary	231	
4	RESULTS AND DISCUSSIONS			
	4.1	Introduction	234	
	4.2	Results of Transmission Network Simulation and Distance		
		Protective Relay Modeling	235	
	4.3	Validation of Modeled Distance Protective Relay Operations	248	
	4.4	Distance Protective Relay Operations Analysis Based on Rough	n Set	
		Theory	251	
		4.4.1 Discovering Knowledge of Relay Trip Assertion	257	
		4.4.2 Discovering Knowledge of Impedance Element Activat	tion	
		and Fault Characteristics	259	
		4.4.3 Discovering Knowledge of Circuit Breaker Operation	267	
		4.4.4 Analysis of Overall Approximation of Distance Relay		
		Decision System DS	273	
	4.5	Generation of Reducts and Relay CD-Decision Algorithm	276	
		4.5.1 Approximation of Reducts with Minimal Approximate		
		Hitting Sets Using Genetic Algorithm	283	
		4.5.2 Generation of Relay <i>CD</i> -Decision Algorithm Using		
		Discovered Reducts	291	
		4.5.3 Evaluation of Prediction/Classification Performance of		
		Discovered CD-Decision Algorithm	299	
	4.6	Generation of Relay CD-Association Rules as a Domain Analys	sis	
		(Relay Operation Hypothesization)	312	
		4.6.1 Intermentation of Discoursed CD Association Dulas C	soc	
		4.6.1 Interpretation of Discovered CD-Association Rules C =	$\Rightarrow D$	
		in Domain Analysis of Distance Protective Relay	221	
	47	Operations	321	
	4./	Discovering Relay CD-Decision Algorithm Using Decision Tre	e	
		l echnique	332	
		4./.1 Evaluation of the Prediction Performance of Decision-	Iree	
		Induced Relay CD-Decision Algorithm and its Validati	on	
		of the Rough-Set Induced Algorithm	542	
		4.7.2 Discovering Relay CD-Association Rules from Decisio	on-	
		1 ree induced Kelay CD-Decision Algorithm	34/	
		4.7.5 Justification of the Userumess of Kough-Set induced R	251	
		Rules over Decision-Tree induced Kelay Rules	331	

xiv

		4.7.4	Comparison of Relay <i>CD</i> -Decision Algorithm Performa Evaluations and <i>CD</i> -Association Rules between Decision	ance
			Tree and Rough Set Analyses	354
	48	Protect	ive Relay Analysis System (PRAY) Demonstration Resu	lts
	1.0	1101000	ive Relay / marysis bystem (1 Ref 1) Demonstration Resa	355
	19	Summe	arv	365
	т.)	Summe	n y	505
5	CONC	LUSIO	N	368
	5.1	Conclu	sion	368
	5.2	Contril	outions of Research	371
	5.3	Recom	mendation for Future Works	373
REF	ERENCES	5		376
APP	ENDICES			393
Al	PPENDIX	A		393
	A.1	Tutoria	l on Protective Relay Decision Table and Its Analysis for	r
		Rule G	eneration Using Rough Set Theory	393
Al	PPENDIX	В		394
	B.1	Model	ing Other Protection-Specific or Protection-Support Mod	ules
		of ARI	EVA relay	394
AI	PPENDIX	С		395
	C.1	DIAde	m Visual Basics Scripts for Distance Protective Relay Da	ita
		Prepara	ation	395
AI	PPENDIX	D		396
	D.1	Plots of	AREVA MiCOM P441 Operations upon Secondary	070
	2.1	Injectio	ons of Transient Fault Voltages and Currents	396
AI	PPENDIX	E		399
	E.1	Pre Da	ta-Preparation DS	399
AI	PPENDIX	F	m 1 · · · · · · · · · · · · · · · · · ·	403
	F1	Post D	ata-Preparation DS	403
AI	PPENDIX (G		414
	G1	Distan	ce protective relay parameter settings	414
AI	PPENDIX	H	se protective relay parameter settings	421
	H1	Conten	ts of Command Script for k-Fold Cross Validation of CL)_
		Predict	ion Algorithm	421
AI	PENDIX	I		423
711	I LI (DIA)	Test O	utput of K-Fold CV for Confusion Matrix Construction	423
AI	PPENDIX	I	deput of K Toki C V for Condusion Matrix Construction	426
11	IIIIIIIII II	, Test O	utput of K-Fold CV for ROC Curve Construction	426
ΔΙ	PPENDIX	K		428
71	K 1	Test O	utput of K-Fold CV for Calibration Plot Construction	428
ΔΙ		IUSLO	alput of K-1 old C V for Canoration 1 for Construction	430
	I LI (DIX)	CD_Pr_{ℓ}	ediction Rules Generated in the 10 th Training Iteration	130
Δ.Ι		<i>ср</i> -нк М	anction Rules Ocherated in the 10 Training iteration	430 /21
A			uality G2 Measures of CD-decision algorithm	
ТА		NULE Q		431
AI	N 1	TaxtV:	awar Output ofter the Classifice Derformance Eveluator	433
ТА		\cap	ewer Output alter the Classifier Ferjormance Evaluator	433
Al	T LINDIA '	U		434

O.1	GraphViewer and TextViewer after J48 and	
	CrossValidationFoldMaker	434
APPENDIX	436	
P.1	ModelPerformanceChart Output after the	
	Classifier Performance Evaluator	436
BIODATA O LIST OF PU	438 439	

