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Abstract

In this study, we consider some pricing currency options models, which
are using the Brownian motion, the fractional Broanian motion and the
mixed fractional Brownian motion. The partial differential equations for
values of European currency options and some Greeks are obtained for all
these models. In addition, in the fractional environment, that parameter
H has huge effect on pricing options, the impact of the Hurst parameter
H is presented. Besides,comparing the Greeks for three currency options
models are illustrated by some figures.
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1. Introduction

In our research we use the following abbreviations and symbols

BS Black-Scholes

BM Brownian motion

GBM Geometric Brownian motion

FBM Fractional Brownian motion

MFBM Mixed fractional Brownian motion

JFBM Jump fractional Brownian motion

JMFBM Jump mixed fractional Brownian motion

B(t) a standard Brownian motion

BH(t) a fractional Brownian motion with parameter H

H ∈ ( 1
2 , 1) exponent parameter

µ drift rate

σ volatility

St Spot price at time t

K Strike price

T Expiration date

rd Domestic interest rate

rf Foreign interest rate

C(t, St) Value of European call currency option

P (t, St) Value of European put currency option
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V (t, St) Value of a currency option that depends just t and St

f(St) Bounded payoff of a currency option

Φ(.) Cumulative normal distribution

N(t) Poisson process with rate λ ∈ (0, 1)

J(t) Jump size at time t

εn Expectation operator over the distribution of
∏n
i=1 e

J(ti)

∆ Sensitivity to the underlying price

Γ Sensitivity to the underlying price sensitivity

υ Sensitivity to the volatility

Θ Sensitivity to the time expiration

ρ Sensitivity to the interest rate

A currency options refers an agreement that gives right to the holder in
order to buy or sell a determined amount of foreign currency at a constant
exercise price on option exercise. American options are traded at any time
before they expire. European options can be exercised only during a specified
period immediately before expiration.

Option pricing developed by Black and Scholes (1973) , is one of the most
frequently used formulas in the area of financial mathematics. This method is
based on the GBM as follows

dSt = µStdt+ σStdB(t), S0 = S > 0, 0 ≤ t ≤ T (1)

here µ, σ are constant.

Nowadays, the BS model is the most commonly used model for analyzing
financial data. However, scientists have argued that option pricing, utilizing
BS model based on BM , is not able to assess some components of financial
data, including:heavy tailed, long-range dependence, and etc. Hence, scholars
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have presented some generalizations of the BS model in order to capture these
phenomena observed on stock markets Dravid et al. (1993), Duan and Wei
(1999), Garman and Kohlhagen (1983), Ho et al. (1995), Toft and Reiner (1997).
Moreover, Gu et al. (2012) modified theBS model to evaluate some components
of financial assets such as long-range correlations and self similarity . They
introduced the FBM model by replacing BM with FBM in the standard BS
model as follows

dSt = µStdt+ σStdBH(t), S0 = S > 0, 0 ≤ t ≤ T. (2)

Xiao et al. (2010) investigated the new model with combination of the jump
process and FBM model in order to get behavior from financial markets such
as:discontinous or jumps, long memory and self-similarity. Unfortunately, ow-
ing to FBM is neither a semi-martingale nor a Markov process, some studies
Cheridito (2003), Rogers et al. (1997) substantiated that the FBM model af-
firms arbitrage in a complete and frictionless market. As a result, the MFBM
model Mishura and Mishura (2008), Shokrollahi and Kılıçman (2014a) has been
introduced to resolve this obstacle and to consider the long memory feature,and
also to capture the fluctuations from stock markets.

TheMFBM is a linear composition of BM and FBM , which displays long-
range correlation and fluctuations from financial stock markets. The MFBM
model is defined as follows

dSt = µStdt+ σStdB(t) + σStdBH(t), S0 = S > 0, 0 ≤ t ≤ T, (3)

where B(t) and BH(t) are assumed independent. Furthermore, Shokrollahi and
Kılıçman (2014b, 2015) have introduced a new framework for pricing currency
options by combining the MFBM model and the Poisson jump process to get
discontinuous, fluctuations, and the long memory feature from stock markets.
In this study we consider various pricing currency option models which are
used the BS model, the FBM model , JFBM model , MFBM model and
JMFBM model, then we investigate the partial differential equations that the
value of currency options satisfy them. Furthermore, for all considered models
the Greeks are obtained.

The remainder of this study as follow: Section 2 provides some definitions
and some features of Greeks. In Section 3, some pricing currency options meth-
ods are presented. Moreover, the partial differential equation and Greeks for
these methods and the impact of exponent parameter H on pricing models are
obtained. Furthermore, the differences among some Greeks are shown. Finally,
Section 4 concludes the paper.
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2. Preliminaries

Greeks summarize how option prices change with respect to underlying vari-
ables and are critically important in asset pricing and risk management. It can
be used to rebalance the portfolio to achieve desired exposure to a certain risk.
More importantly, knowing the Greek, a particular exposure can be hedged
from adverse changes in the market by using appropriate amount of other re-
lated financial instruments. Unlike option prices, which can be observed in the
market, Greeks can not be observed and have to be calculated given a model
assumption. Typically, the Greeks are computed using a partial differentiation
of the price formula.

Delta

Delta (∆) of an option defined as

∆ =
change in option price

change in underlying
(4)

The sensitivity of the option to the underlying finance is assessed by Delta.
In this regard, call deltas indicates positive contrary to put deltas that is neg-
ative.It should be noted that there is a positive interaction between call option
price and the underlying asset in comparison to inversely relation of put option
price with the underlying asset. In view of this, according to the put-call-parity,
we have the put delta equals the call delta minus 1. Delta Hedging is a very
common strategy to do the arbitrage and minimizes the risk of portfolio in the
option market.

Gamma

Gamma (Γ) calculated the the immediate changes of delta in terms of partial
alterations, which occur in the underlying price of stock. It is the second
derivative of the option value with respect to the underlying asset.

Γ =
change in delta

change in underlying
(5)
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It reveals that for saving the delta in a neural position, knowing how much
and how often a position should be hedged repeatedly is essential. The delta-
hedge strategy in order to hedge a portfolio, by keeping gamma in a small
position, since the smaller is not common, so we intend to regulate the hedge
to save the delta in a neural manner. The gammas are always positive for call
options, while be negative for put options. However, gammas generally change
signs for more complicated options such as binary options.

Theta

Theta (Θ) is defined as

Θ = − change in option price

change in time tomaturity
(6)

Theta measures the sensitivity of the value of the option to the change of time
to maturity. If the asset price is constant, consequently the option will change
by theta with time.

Vega

The Vega, assesses the sensitivity to volatility, which expresses as the amount
of money per stock gain or lose as volatility increases or decreases by 10/0.
It is the derivative of the value of the option in terms of the volatility of the
stock price . The positive value of Vega substantiates that the value of an
option increase augmenting the volatility in comparison to the negative value
of Vega, which indicates that the value of an option will reduce by declining of
the volatility. Greater volatility reflects higher value of call and put options.

V ega(υ) =
change in option price

change in volatility
(7)

Rho

Rho (ρ) refers to the rate of option alteration respect to the rate of interest.

ρ =
change in option price

change in interest rate
(8)
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3. Greeks and Partial Differential Equations

In the following section we want to obtain the Greeks and partial differential
equations for these models: the BS model, the FBM model, the JFBM
model , the MFBM model and, the JMFBM model. Moreover, the partial
differential equation for any pricing currency models are presented. For all the
pricing currency models the following hypothesis will be provided:

(i) there is no transaction costs or taxes;

(ii) security trading is continuous;

(iii) here rd and rf are known and constant thought time;

(iv) there are no risk-free arbitrage opportunities.

Now, we consider two investments:

1. a money market account:

dMt = rdMtdt, M0 = 1, 0 ≤ t ≤ T. (9)

2. a stock whose price satisfies in the following pricing models.

3.1 The BS model

The BS model for the first time has been presented by Black and Scholes
(1973). The price of stock in this model that follows the equation (1) is given
by

dSt = (rd − rf )Stdt+ σdBt S0 = 1, 0 ≤ t ≤ T. (10)

Then, the pricing of call currency option as follows

C(t, St) = Ste
−rf (T−t)Φ(d1)−Ke−rd(T−t)Φ(d2), (11)

and for put currency options

P (t, St) = Ke−rd(T−t)Φ(−d2)− Ste−rf (T−t)Φ(−d1), (12)
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here

d1 =
ln St

K + (rd − rf )(T − t) + σ2

2 (T − t)
σ
√
T − t

,

d2 = d1 − σ
√
T − t. (13)

Theorem 3.1. For the BS model, V (t, St) is the solution of the following
equation

∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2
+ (rd − rf )

∂V

∂S
− rdV = 0. (14)

Theorem 3.2. The Greeks for the BS call currency options model are given
by

∆ =
∂C

∂St
= e−rf (T−t)Φ(d1),

∇ =
∂C

∂K
= −e−rd(T−t)Φ(d2),

ρrd =
∂C

∂rd
= K(T − t)e−rd(T−t)Φ(d2),

ρrf =
∂C

∂rf
= St(T − t)e−rf (T−t)Φ(d1),

Θ =
∂C

∂t
= Strfe

−rf (T−t)Φ(d1)−Krde−rd(T−t)Φ(d2)

− Ste
−rf (T−t) σ

2
√
T − t

Φ′(d1),

Γ =
∂2C

∂S2
t

= e−rf (T−t)
Φ′(d1)

St
√
σ2(T − t)

,

ϑσ =
∂C

∂σ
= Ste

−rf (T−t)
√
T − tΦ′(d1).

3.2 The FBM model

The FBM model is a generalization of the BS model, which is based on
replacing the BM by a FBM in the BS model Cheridito (2003), Dasgupta
and Kallianpur (2000), Rogers et al. (1997), Salopek (1998), Shiryaev (1998).
Necula (2002) has represented the FBM for pricing options. The price of stock
in the FBM model based on equation () is given by
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dSt = (rd − rf )Stdt+ σStdBH(t), S0 = S > 0, 0 ≤ t ≤ T. (15)

Then, the pricing of call currency option as follows

C(t, St) = Ste
−rf (T−t)Φ(d1)−Ke−rd(T−t)Φ(d2), (16)

and for put currency options

P (t, St) = Ke−rd(T−t)Φ(−d2)− Ste−rf (T−t)Φ(−d1), (17)

here

d1 =
ln St

K + (rd − rf )(T − t) + σ2

2 (T 2H − t2H)

σ
√
T 2H − t2H

,

d2 = d1 − σ
√
T 2H − t2H . (18)

Theorem 3.3. For the FBM model, V (t, St) is the solution of the PDE

∂V

∂t
+Hσ2t2H−1S2

t

∂2V

∂S2
t

+ (rd − rf )St
∂V

∂St
− rdV = 0. (19)

Theorem 3.4. The Greeks for the FBM call currency option model can be
written as

∆ =
∂C

∂St
= e−rf (T−t)Φ(d1),

∇ =
∂C

∂K
= −e−rd(T−t)Φ(d2),

ρrd =
∂C

∂rd
= K(T − t)e−rd(T−t)Φ(d2),

ρrf =
∂C

∂rf
= St(T − t)e−rf (T−t)Φ(d1),

Θ =
∂C

∂t
= Strfe

−rf (T−t)Φ(d1)−Krde−rd(T−t)Φ(d2)

− Ste
−rf (T−t) σHt2H−1√

T 2H − t2H
Φ′(d1),

Γ =
∂2C

∂S2
t

= e−rf (T−t)
Φ′(d1)

St
√
σ2(T 2H − t2H)

,

ϑσ =
∂C

∂σ
= Ste

−rf (T−t)
√
T 2H − t2HΦ′(d1).
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The following theorem represents the influence of Hurst parameter H in
FBM model.

Theorem 3.5. The impact of the parameter H is given by

∂C

∂H
= Ste

−rf (T−t)σ(T 2H lnT − t2H ln t)√
T 2H − t2H

Φ′(d1). (20)

3.3 The JFBM model

For capture jumps and discontinuous from financial markets Xiao et al.
(2010) introduced the new model by combination of the Poisson jump process
and FBM model. The value of stock in this model is

dSt = (rd − rf )Stdt+ σStdBH(t)

+ (eJ(t) − 1)dNt, S0 = S > 0, 0 ≤ t ≤ T, (21)

where (eJ(t) − 1) ∼ N(µJ(t), δ
2(t)). Moreover, all three source of BH(t), N(t),

and eJ(t) − 1, are supposed to be independent.

Thus,the price of call currency options is given by

C(t, St) =

∞∑
n=0

e−λ(T−t)
λn(T − t)n

n!
εn

×
[
St

n∏
i=1

eJ(ti)e(−rf+λµJ(t))(T−t)Φ(d1)

− Ke−rd(T−t)Φ(d2)
]
, (22)

and for the put currency option we have

P (t, St) =

∞∑
n=0

e−λ(T−t)
λn(T − t)n

n!
εn

×
[
Ke−rd(T−t)Φ(−d2)

− St

n∏
i=1

eJ(ti)e(−rf+λµJ(t))(T−t)Φ(−d1)
]
, (23)
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here

d1 =
ln

St
∏n

i=1 e
J(ti)

K + (rd − rf − λµJ(t))(T − t) + σ2

2 (T 2H − t2H)

σ
√
T 2H − t2H

,

d2 = d1 − σ
√
T 2H − t2H . (24)

Theorem 3.6. For the JFBM model, V (t, St) is the solution of the PDE

∂V

∂t
+Hσ2t2H−1S2 ∂

2V

∂S2
+ (rd − rf − λµJ(t))S

∂V

∂S

−rdV + λE[V (eJ(t)St, t)− V (St, t)] = 0. (25)

Theorem 3.7. The Greeks for the JFBM call currency option model are
given by

4 =
∂C

∂S
=

∞∑
n=0

e−λ(T−t)λn(T − t)n

n!
εn[

n∏
i=1

eJ(ti)e−(rf+λµJ(t))(T−t)Φ(d1)

]
.

∇ =
∂C

∂K
=

∞∑
n=0

e−λ(T−t)λn(T − t)n

n!
εn

[
−e−rd(T−t)Φ(d2)

]
.

ρrd =
∂C

∂rd
=

∞∑
n=0

e−λ(T−t)λn(T − t)n

n!
εn

[
K(T − t)e−rd(T−t)

]
Φ(d2).

ρrf =
∂C

∂rf
=

∞∑
n=0

e−λ(T−t)λn(T − t)n

n!
εn

[
−St(T − t)

n∏
i=1

eJ(ti)e−(rf+λµJ(t))(T−t)Φ(d1)

]
.

Θ =
∂C

∂t
=

∞∑
n=0

e−λ(T−t)λn+1(T − t)n − ne−λ(T−t)λn(T − t)n−1

n!
εn[

St

n∏
i=1

eJ(ti)e−(rf+λµJ(t))(T−t)Φ(d1)−Ke−rd(T−t)Φ(d2)

]
+

∞∑
n=0

e−λ(T−t)λn(T − t)n

n!
εn

[
(rf + λµJ(t))St

n∏
i=1

eJ(ti)e−(rf+λµJ(t))(T−t)Φ(d1)− rdKe−rd(T−t)Φ(d2)

− Hσ2t2H−1√
σ2(T 2H − t2H)

St

n∏
i=1

eJ(ti)e−(rf+λµJ(t))(T−t)Φ′(d1)
]
.
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Γ =
∂2C

∂S2
=

∞∑
n=0

e−λ(T−t)λn(T − t)n

n!
εn

[∏n
i=1 e

J(ti)e−(rf+λµJ (t))(T−t)

St
√
σ2(T 2H − t2H)

Φ′(d1)

]

νσ =
∂C

∂σ
=

∞∑
n=0

e−λ(T−t)λn(T − t)n

n!
εn[

St

n∏
i=1

eJ(ti)e−(rf+λµJ(t))(T−t)
√
T 2H − t2HΦ′(d1)

]
.

Theorem 3.8. The effect of hurst parameter as follows

∂C

∂H
=

∞∑
n=0

e−λ(T−t)λn(T − t)n

n!
εn

[
St
σ(T 2H lnT − t2H ln t)√

T 2H − t2H
n∏
i=1

eJ(ti)e−(rf+λµJ(t))(T−t)Φ′(d1)
]
. (26)

3.4 The MFBM model

The MFBM model is a extension of the standard BS model based on the
MFBM which is a linear combination of the FBM and the BM . The first
study of applying MFBM model in finance is presented by Cheridito (2003).
He showed that, for H ∈ (3/4, 1), the MFBM was equivalent to one with BM
and then it was arbitrage free. For this we assume that H ∈ (3/4, 1), for get
more information about theMFBM you can see Cheridito (2003), Shokrollahi
and Kılıçman (2014a,a), Sun (2013), Xiao et al. (2012), Zili (2006) .

The price of stock in the MFBM model respect to the equation (3) can be
written as follows

dSt = (rd − rf )Stdt+ σStdB(t) + σStdBH(t),

S0 = S > 0, 0 ≤ t ≤ T. (27)

Hence, the pricing of call currency option is given by

C(t, St) = Ste
−rf (T−t)Φ(d1)−Ke−rd(T−t)Φ(d2), (28)

and for put currency options
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P (t, St) = Ke−rd(T−t)Φ(−d2)− Ste−rf (T−t)Φ(−d1), (29)

where

d1 =
ln St

K + (rd − rf )(T − t) + σ2

2 (T − t) + σ2

2 (T 2H − t2H)

σ
√
T − t+ T 2H − t2H

,

d2 = d1 − σ
√
T − t+ T 2H − t2H . (30)

Theorem 3.9. For the MFBM model, V (t, St) is the solution of the PDE

∂V

∂t
+

1

2
σ2S2

t

∂2V

∂S2
t

+Hσ2t2H−1S2
t

∂2V

∂S2
t

+ (rd − rf )St
∂V

∂St
− rdV = 0. (31)

Theorem 3.10. The Greeks for the MFBM call currency option model are
given by

∆ =
∂C

∂St
= e−rf (T−t)Φ(d1),

∇ =
∂C

∂K
= −e−rd(T−t)Φ(d2),

ρrd =
∂C

∂rd
= K(T − t)e−rd(T−t)Φ(d2),

ρrf =
∂C

∂rf
= St(T − t)e−rf (T−t)Φ(d1),

Θ =
∂C

∂t
= Strfe

−rf (T−t)Φ(d1)−Krde−rd(T−t)Φ(d2)

− 1

2
Ste
−rf (T−t) σ + 2σHt2H−1√

T − t+ T 2H − t2H
Φ′(d1),

Γ =
∂2C

∂S2
t

= e−rf (T−t)
Φ′(d1)

St
√
σ2(T − t+ T 2H − t2H)

,

ϑσ =
∂C

∂σ
= Ste

−rf (T−t)Φ′(d1)
√
T − t+ T 2H − t2H .

The following theorem represents the influence of Hurst parameterH inMFBM
model.

Theorem 3.11. The impact of the parameter H is given by

∂C

∂H
= Ste

−rf (T−t)σ(T 2H lnT − t2H ln t)√
T − t+ T 2H − t2H

Φ′(d1). (32)
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3.5 The JMFBM model

The JMFBM is a mixed of Poisson jumps and theMFBM for capture be-
haviour of financial market such as:fluctuations,long-range correlations,jumps
and etc. This model is introduced by Shokrollahi and Kılıçman (2014a). The
stock price of this model as follows

dSt = (rd − rf )Stdt+ σdB(t) + σStdBH(t) + (eJ(t) − 1)dNt,

S0 = S > 0, 0 ≤ t ≤ T, (33)

where (eJ(t) − 1) ∼ N(µJ(t), δ
2(t)). Moreover, all three source of BH(t), N(t),

and eJ(t) − 1, are supposed to be independent.

Then,the price of call currency option is given by

C(t, St) =

∞∑
n=0

e−λ(T−t)
λn(T − t)n

n!
εn

[
St

n∏
i=1

eJ(ti)e(−rf+λµJ(t))(T−t)Φ(d1)

− Ke−rd(T−t)Φ(d2)
]
, (34)

and for the put currency option we have

P (t, St) =

∞∑
n=0

e−λ(T−t)
λn(T − t)n

n!
εn

[
Ke−rd(T−t)Φ(−d2)

− St

n∏
i=1

eJ(ti)e(−rf+λµJ(t))(T−t)Φ(−d1)
]
, (35)

where

d1 =
ln

St
∏n

i=1 e
J(ti)

K + (rd − rf − λµJ(t))(T − t) + σ2

2 (T − t) + σ2

2 (T 2H − t2H)

σ
√
T − t+ T 2H − t2H

,

d2 = d1 − σ
√
T − t+ T 2H − t2H . (36)

Theorem 3.12. For the JMFBM model, V (t, St) is the solution of the PDE

∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2
t

+Hσ2t2H−1S2 ∂
2V

∂S2
t

+ (rd − rf − λµJ(t))St
∂V

∂St

− rdV + λE[V (eJ(t)St, t)− V (St, t)] = 0. (37)
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Theorem 3.13. The Greeks for the JMFBM call currency option model as
follows

4 =
∂C

∂St
=

∞∑
m=0

e−λ(T−t)λn(T − t)n

n!
εn[

n∏
i=1

eJ(ti)e−(rf+λµJ(t))(T−t)Φ(d1)

]
.

∇ =
∂C

∂K
=

∞∑
n=0

e−λ(T−t)λn(T − t)n

n!
εn

[
−e−rd(T−t)Φ(d2)

]
.

ρrd =
∂C

∂rd
=

∞∑
n=0

e−λ(T−t)λn(T − t)n

n!
εn

[
K(T − t)e−rd(T−t)Φ(d2)

]
.

ρrf =
∂C

∂rf
=

∞∑
n=0

e−λ(T−t)λn(T − t)n

n!
εn

×

[
−St(T − t)

n∏
i=1

eJ(ti)e−(rf+λµJ(t))(T−t)Φ(d1)

]
.

Θ =
∂C

∂t
=

∞∑
n=0

e−λ(T−t)λn+1(T − t)n − ne−λ(T−t)λn(T − t)n−1

n!
εn[

St

n∏
i=1

eJ(ti)e−(rf+λµJ(t))(T−t)Φ(d1)−Ke−rd(T−t)Φ(d2)

]

+

∞∑
n=0

e−λ(T−t)λn(T − t)n

n!
εn

×
[
(rf + λµJ(t))St

n∏
i=1

eJ(ti)e−(rf+λµJ(t))(T−t)Φ(d1)− rdKe−rd(T−t)Φ(d2)

−1

2

σ2 + 2Hσ2t2H−1√
σ2(T − t) + σ2(T 2H − t2H)

St

n∏
i=1

eJ(ti)e−(rf+λµJ(t))(T−t)Φ′(d1)
]
.
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Γ =
∂2C

∂S2
=

∞∑
n=0

e−λ(T−t)λn(T − t)n

n!
εn

[ ∏n
i=1 e

J(ti)e−(rf+λµJ (t))(T−t)

St
√
σ2(T − t) + σ2(T 2H − t2H)

Φ′(d1)

]

νσ =
∂C

∂σ
=

∞∑
n=0

e−λ(T−t)λn(T − t)n

n!
εn[

St

n∏
i=1

eJ(ti)e−(rf+λµJ(t))(T−t)Φ′(d1)
√
T − t+ T 2H − t2H

]
.

The following theorem shows the effect of hurst parameter H in JMFBM .

Theorem 3.14. The effect of parameter H is

∂C

∂H
=

∞∑
n=0

e−λ(T−t)λn(T − t)n

n!
εn

[
St

σ2(T 2H lnT − t2H ln t)√
σ2(T − t) + σ2(T 2H − t2H)

×
n∏
i=1

eJ(ti)e−(rf+λµJ(t))(T−t)Φ′(d1)
]
. (38)

The following figures show that the Greeks of the BS model, the FBM
model, and the MFBM model. This numerical survey reveals that the varia-
tion discrepancy of Greeks with the expiration date and the exercise price for
out-of-the-money call currency options. Suppose St = 100, rd = 0.021, rf =
0.032, σ = 0.19, t = 0.1, H = 0.76, T ∈ [8.11, 18],K ∈ [101, 130]. Figures 1-7
reflect the fact that the valuation of the Delta, Gamma, Nabla, Rho-rd,Rho-rd,
Theta, and Vega with selected parameters, respectively . As are result, it is
evident that there are various the valuations of the Greeks for the BS model,
FBM model and MFBM model.

Figure 1: Delta values for the out-of-the-money case .
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Figure 2: Gamma values for the out-of-the-money case .

Figure 3: Nabla values for the out-of-the-money case .

Figure 4: Rho-rd values for the out-of-the-money case .
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Figure 5: Rho-rf values for the out-of-the-money case .

Figure 6: Theta values for the out-of-the-money case .

Figure 7: Vega values for the out-of-the-money case .

4. Conclusion

The option Greeks are accounted as substantial notions and tools in the risk
management of financial portfolio. The Greeks can be employed to rebalance
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the portfolio to achieve desired exposure to a certain risk. More importantly,
knowing the Greek, a particular exposure can be hedged from adverse changes
in the market by using appropriate amount of other related financial instru-
ments. This research presented some pricing currency option models, especially
the models which are introduced in the fractional environments. The partial
differential equations and the Greeks for the whole currency options models
are obtained. Moreover, in the fractional environment the impacts of exponent
parameter H are presented.
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Appendix

Proof of Theorem 3.3. Let V (t, St) be the price of the currency derivatives
at time t and let Π be the portfolio value. Thus

Πt = V (St, t)−∆St. (39)

Since

St = S0 exp

[
µT + σBHT −

1

2
σ2T 2H

]
. (40)

Then

DuSτ = SτDu

(
µτ + σBHτ −

1

2
σ2τ2H

)
(41)

= Sτ [Du(σBHτ )],

Dφ
u = SτHστ

2H−1. (42)

Hence we have

dΠt = dV (t, St)−∆(dSt + rfStdt)

=

(
∂V

∂t
+Hσ2t2H−1S2

t

∂2V

∂S2
t

+ µSt
∂V

∂St

)
dt

+ σSt
∂V

∂St
dBHt −∆

(
µStdt+ σStdB

H
t + rfStdt

)
=

(
∂V

∂t
+Hσ2t2H−1S2

t

∂2V

∂S2
t

+ µSt
∂V

∂St
−∆µSt −∆rfSt

)
dt

+

(
σSt

∂V

∂St
−∆σSt

)
dBHt . (43)

For eliminate the stochastic noise we choose ∆ = ∂V
∂St

, then

dΠt =

(
∂V

∂t
+Hσ2t2H−1S2

t

∂2V

∂S2
t

−∆rfSt

)
dt. (44)

The return of an amount Πt invested in bank account equal to rdΠtdt at time
dt. for absence of arbitrage these values must be same Sun (2013), thus(

∂V

∂t
+Hσ2t2H−1S2

t

∂2V

∂S2
t

− rfSt
∂V

∂St

)
dt = rdΠtdt. (45)
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Since Πt = V (t, St)−∆St, hence

∂V

∂t
+Hσ2t2H−1S2

t

∂2V

∂S2
t

− rfSt
∂V

∂St
dt = rd(V − St

∂V

∂St
), (46)

so

∂V

∂t
+Hσ2t2H−1S2

t

∂2V

∂S2
t

+ (rd − rf )St
∂V

∂St
− rdV = 0. (47)

Proof of Theorem 3.4. First, the popular equation is obtained. Let y be
one of the impression operators

∂C

∂y
=

∂Ste
−(rf )(T−t)

∂y
Φ(d1) + Ste

−rf (T−t) ∂Φ(d1)

∂y

− ∂Ke−rd(T−t)

∂y
Φ(d2)−Ke−rd(T−t) ∂Φ(d2)

∂y
. (48)

But

∂Φ(d2)

∂y
= Φ′(d2)

∂d2
∂y

=
1√
2π
e−

d22
2
∂d2
∂y

=
1√
2π

exp

(
−

(d1 −
√
σ2(T 2H − t2H))2

2

)
∂d2
∂y

=
1√
2π
e−

d21
2 exp

(
d1

√
σ2(T 2H − t2H)

)
exp

(
−σ

2(T 2H − t2H)

2

)
∂d2
∂y

=
1√
2π
e−

d21
2 exp

(
ln
St
K

+ (rd − rf )(T − t)
)
∂d2
∂y

=
1√
2π
e−

d21
2
St
K

exp ((rd − rf )(T − t)) ∂d2
∂y

. (49)

Then we have that

∂C

∂y
=

∂Ste
−(rf )(T−t)

∂y
Φ(d1)− ∂Ke−rd(T−t)

∂y
Φ(d2)

+ Ste
−rf (T−t)Φ′(d1)

∂
√
σ2(T 2H − t2H)

∂y
. (50)
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Substituting in (50) we get the desired.

Proof of Theorem 3.5.

η =
∂C

∂H
= Ste

−rf (T−t)Φ′(d1)
∂
√
σ2(T 2H − t2H)

∂H

= Ste
−rf (T−t)Φ′(d1)

σ(T 2H − t2H)√
T 2H − t2H

. (51)

Proof of Theorem 3.12. Let V (t, St) be the price of the currency derivatives
at time t and let Π be the portfolio value. Hence

Πt = V (St, t)−∆St. (52)

Portfolio value movements by in a very small term of time. Therefore dΠt =
dV (St, t)−∆

[
dSt + (rf + λµJ(t))Stdt

]
since

St = S exp

[
(µ− λµJ(t))t+ σBHt + σBt −

1

2
σ2t− 1

2
σ2t2H +

Nt∑
i=1

J(ti)

]
. (53)

By applying the It formula for jump diffusion process Matsuda (2004) we
have

dV (t, St) =
∂V

∂t
+

1

2
σ2S2

t

∂2V

∂S2
t

+Hσ2t2H−1S2
t

∂2V

∂S2
t

+ (µ− λµJ(t))St
∂V

∂St
+ σSt

∂V

∂St
dBt

+ σSt
∂V

∂St
dBHt + [V (eJ(t)St, t)− V (St, t)]dNt. (54)

The term of [V (eJ(t)St, t)−V (St, t)]dNt describe the discrepancy in the op-
tion price when a jump happens. The movement in the portfolio value presents
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in this equation

dΠt = dV (t, St)−∆
(
dSt + (rf + λµJ(t))Stdt

)
=

∂V

∂t
+

1

2
σ2S2

t

∂2V

∂S2
t

+Hσ2t2H−1S2
t

∂2V

∂S2
t

+ (µ− λµJ(t))St
∂V

∂St
+ σSt

∂V

∂St
dBt

+ σSt
∂V

∂St
dBHt + [V (eJ(t)St, t)− V (St, t)]dNt

− ∆
[
St(µ− λµJ(t))dt+ σStdBt + σStdB

H
t + St(e

J(t) − 1)dNt − (rf + λµJ(t))Stdt
]

dΠt =
[∂V
∂t

+
1

2
σ2S2

t

∂2V

∂S2
t

+Hσ2t2H−1S2
t

∂2V

∂S2
t

+ (µ− λµJ(t))St
∂V

∂St
−∆(µ− λµJ(t))St

− ∆(rf + λµJ(t))St

]
dt+ (σSt

∂V

∂St
−∆σSt)dBt + (σSt

∂V

∂St
−∆σSt)dB

H
t

+ [V (eJ(t)St, t)− V (St, t)−∆St(e
J(t) − 1)]dNt. (55)

By setting ∆ = ∂V
∂St

to eliminate the stochastic noise then

dΠt =
[∂V
∂t

+
1

2
σ2S2

t

∂2V

∂S2
t

+Hσ2t2H−1S2
t

∂2V

∂S2
t

+ λE[V (eJ(t)St, t)− V (St, t)

− ∂V

∂St
(eJ(t) − 1)St]−∆(rf + λµJ(t))St

]
dt. (56)

The return of an amount Πt invested in bank account equal to rdΠtdt at
time dt. For no-arbitrage these prices should be similar Sun (2013).Then

{∂V
∂t

+
1

2
σ2S2

t

∂2V

∂S2
t

+Hσ2t2H−1S2
t

∂2V

∂S2
t

+ λE[V (eJ(t)St, t)− V (St, t)

− ∂V

∂St
(eJ(t) − 1)St]−∆(rf + λµJ(t))St}dt = rdΠtdt. (57)

Since Πt = V (t, St)−∆St, thus

∂V

∂t
+

1

2
σ2S2

t

∂2V

∂S2
t

+Hσ2t2H−1S2
t

∂2V

∂S2
t

+ λE[V (eJ(t)St, t)− V (St, t)−
∂V

∂St
(eJ(t) − 1)St]− (rf + λµJ(t))St

∂V

∂St

= rd

(
V (t, St)−

∂V

∂St
St

)
, (58)
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so

∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2
+Hσ2t2H−1S2 ∂

2V

∂S2
+ (rd − rf − λµJ(t))S

∂V

∂S

− rdV + λE[V (eJ(t)St, t)− V (St, t)] = 0. (59)

Proof of Theorem 3.13. First, the popular equation is obtained. Let y be
one of the impression operators. By setting

C1(t, St) = St

n∏
i=1

eJ(ti)e−(rf+λµJ(t))(T−t)Φ(d1)−Ke−rd(T−t)Φ(d2), (60)

then we have

∂C1

∂y
=

∂
(
St
∏n
i=1 e

J(ti)e−(rf+λµJ(t))(T−t)
)

∂y
Φ(d1)

+ St

n∏
i=1

eJ(ti)e−(rf+λµJ(t))(T−t) ∂Φ(d1)

∂y

− ∂Ke−rd(T−t)

∂y
Φ(d2)−Ke−rd(T−t) ∂Φ(d2)

∂y
. (61)

But

∂Φ(d2)

∂y
= Φ′(d2)

∂d2
∂y

=
1√
2π
e−

d22
2
∂d2
∂y

=
1√
2π

exp

[
−

(d1 −
√
σ2(T − t) + σ2(T 2H − t2H))2

2

]
∂d2
∂y

.

=
1√
2π
e−

d22
2 exp

[
d1

√
σ2(T − t) + σ2(T 2H − t2H)

]
× exp

[
−σ

2(T − t) + σ2(T 2H − t2H)

2

]
∂d2
∂y

=
1√
2π
e−

d22
2 exp

[
ln

(
St
∏n
i=1 e

J(ti)

K

)
+ (rd − rf − λµJ(t))(T − t)

]
∂d2
∂y

= Φ′(d1)
St
∏n
i=1 e

J(ti)

K
exp[(rd − rf − λµJ(t))(T − t)]

∂d2
∂y

(62)
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Then we have that

∂C1

∂y
=

∂
(
St
∏n
i=1 e

J(ti)e−(rf+λµJ(t))(T−t)
)

∂y
Φ(d1)− ∂Ke−rd(T−t)

∂y
Φ(d2)

+
[
St

n∏
i=1

eJ(ti)e−(rf+λµJ(t))(T−t)Φ′(d1)

×
∂
√
σ2(T − t) + σ2(T 2H − t2H)

∂y

]
, (63)

substituting in equation (63) we get the other Greeks .

Proof of Theorem 3.14. We first differentiate C(t, St) under to H then we
have

∂C

∂H
=

∞∑
m=0

e−λ(T−t)λn(T − t)n

n!
εn

×

[
St

n∏
i=1

eJ(ti)e−(rf+λµJ(t))(T−t)Φ′(d1)
∂
√
σ2(T − t) + σ2(T 2H − t2H)

∂H

]

=

∞∑
n=0

e−λ(T−t)λn(T − t)n

n!
εn

[
St

n∏
i=1

eJ(ti)e−(rf+λµJ(t))(T−t)Φ′(d1)

× σ2(T 2H lnT − t2H ln t)√
σ2(T − t) + σ2(T 2H − t2H)

]
. (64)

Proof of the other Theorems are the same with the mentioned above proofs.
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