UNIVERSITI PUTRA MALAYSIA

REFERENCE EVAPOTRANSPIRATION ESTIMATION USING ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM

FATEMEH KARIMALDINI

FK 2011 83
REFERENCE EVAPOTRANSPIRATION ESTIMATION USING ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM

By

FATEMEH KARIMALDINI

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science

May 2011
Evapotranspiration is an integral part of the hydrologic cycle and an important component in water resource development and management, especially in the arid and semi-arid conditions such as those found in Iran, where water resources are limited. The standard FAO-56 Penman Monteith (PM) equation requires several meteorological parameters for estimating reference evapotranspiration (E_{TO}) that are not usually available in most stations. In addition, traditional methods that require limited climatic parameters for E_{TO} estimation are not applicable to all climatic conditions. As an alternative to traditional techniques, soft computing techniques can be used for modelling this nonlinear phenomenon. This research investigates the potential of the Adaptive Neuro-Fuzzy Inference System (ANFIS) technique for daily reference evapotranspiration modeling under arid, semi-arid and humid conditions of Iran. The Gamma Test (GT) technique is employed to find the best input combination and number of sufficient data points for the model calibration. The
training and testing data sets are chosen based on the K-fold method of cross validation. The estimates of ANFIS models are compared with FAO-56 reduced-set PM ET\textsubscript{O} approaches and conventional empirical ET\textsubscript{O} equations (Hargreaves, priestly Tailor, Makkink, Blaney-Criddle and Turc) that are calibrated with the Genetic Algorithm technique. The FAO-56 full-set PM method is adopted as the reference ET\textsubscript{O} equation, and it is applied to calibrate other ET\textsubscript{O} equations and ANFIS models. The accuracy of all models are measured based on MAE, MSE and STD values. The comparison results indicate that when similar meteorological inputs are considered, the ANFIS models performed better than all the methods pursued under arid, semi-arid and humid conditions of Iran. In addition, the general ANFIS model (whose inputs are temperature, solar radiation, relative humidity, wind speed and aridity coefficient) performed well under arid, semi-arid and humid conditions of Iran. It is concluded that after temperature, the wind speed data is the most important parameter that should be considered in the combination of inputs for ET\textsubscript{O} estimation under arid and semi-arid conditions, however the effect of wind speed in the combination of inputs for ET\textsubscript{O} estimation under humid conditions is found to be not significant. It has been found that the minimum required meteorological parameters that gives the low error rate under arid and semi-arid conditions are temperature and wind speed data, and under humid conditions are temperature data and estimated relative humidity data from temperature data (by FAO-56 reduced set approach). Therefore, using the ANFIS technique is strongly suggested as an alternative to the traditional methods that suffer from several stringent meteorological requirements or invalidity under various climatic conditions.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

ANGGARAN SEJAT PEMELUHAN MENGGUNAKAN ADAPTIVE NEURO-FUZZY INFEERENCE SYSTEM

Oleh
FATEMEH KARIMALDINI

Mei 2011

Pengerusi: Profesor Lee Teang Shui, PhD

Fakulti: Kejuruteraan

Penyejatpeluhuan merupakan pelengkap kitar hidrologi dan suatu komponen penting dalam pembangunan dan pengurusan sumber air, terutamanya di kawasan keadaan gersang dan separa gersang seperti yang terdapat di Iran, dimana sumber air terhad. Persamaan piawaian FAO-56 Penman Monteith (PM) memerlukan beberapa parameter meteorologi yang tidak biasa tersedia ada di stesen meteorologi, demi untuk menganggar sejat pemeluhan rujukan \(\text{ET}_o \). Tambahan pula, kaedah tradisional yang memerlukan parameter iklim terhad untuk anggaran \(\text{ET}_o \) tidak sesuai digunapakai dalam semua iklim. Sebagai alternatif, teknik kiraan-lembut boleh digunapakai untuk pemodelan fenomena tak lelurus. Kajian ini berkenaan potensi teknik Sistem Taabir Kelam Saraf Suai (ANFIS) untuk pemodelan sejat pemeluhan rujukan harian dengan data cuaca terhad dalam keadaan gersang, separa gersang dan lembab yang terdapat di Iran. Teknik Ujian Gamma (GT) dipakai demi mencari kombinasi masukan terbaik dan jumlah data mencukupi untuk penentukan. Set data
ACKNOWLEDGEMENTS

The main appreciation always goes to the one who helps me through this path and I hope to be a small manifestation of his kindness and glory.

I would like to thank my compassionate supervisor, Prof. Lee Teang Shui who always guides me through all the ups and downs, joyful and hopeless moments during my research. I truly appreciate his support, concerns, time and sincerity I had received during my study. He was always there wherever I needed and treated me with kindness and gentle sense of humor. I would like to thank my very helpful co-supervisor, Dr. Thamer Ahmed Mohamed, for his advice and insightful comments which guide me through the proper direction. I am indebted for his knowledge and helpful contributions on this thesis. My special thanks to the members of Engineering Faculty and GSO of Universiti Putra Malaysia for their help.

I would like to dedicate this thesis to my mother, Munes, for her unconditional love, and to the memory of my father. I would like to express my deepest gratitude to my good brothers, Mohammad, Ali and Mojtaba and my sister, Zahra, who are always around for me. This thesis would not have been possible without their support, love and understanding. A note of thanks to my brothers, sisters and parents in law and entire family are upper most in my mind. I also wish to thank my husband, Mohammadreza Abdollahi and my son, Aref, the dearest person in my life, for their love and support throughout my pursuit of this research study.
I certify that a Thesis Examination Committee has met on 12 May 2011 to conduct the final examination of Fatemeh Karimaldini on her thesis entitled “EVAPOTRANSPIRATION USING ADAPTIVE NEURO FUZZY INFERENCE SYSTEM” in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the master degree.

Members of the Thesis Examination Committee were as follows:

Abdul Halim Bin Ghazali, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Mohd Amin Bin Mohd Soom, PhD
Professor
Faculty of Engineering
Universiti Putra Malaysia
(Internal Examiner)

Samsul Bahari Bin Mohd Noor, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Internal Examiner)

Sobri Harun, PhD
Associate Professor
Department of Hydraulics and Hydrology
Faculty of Engineering
Universiti Teknologi Malaysia
(External Examiner)

SHAMSUDDIN SULAIMAN, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Lee Teang Shui, PhD
Professor
Department of Biological and Agricultural Engineering
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Thamer Ahmed Mohamed, PhD
Associate Professor
Department of Civil Engineering
Faculty of Engineering
Universiti Putra Malaysia
(Member)

Huang Yuk Feng, PhD
Assistant Professor
Department of Civil Engineering
Faculty of Engineering and Science
Universiti Tunku Abdul Rahman
(Member)

HASANAH MOHD. GHAZALI, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for other degree at University Putra Malaysia or at any other institution.

FATEMEH KARIMALDINI

Date: 12 May 2011
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
</tr>
<tr>
<td>ABSTRAK</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
</tr>
<tr>
<td>APPROVAL</td>
</tr>
<tr>
<td>DECLARATION</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
</tr>
</tbody>
</table>

CHAPTER

1 **INTRODUCTION**
1.1 Background 1
1.2 Problem Statement 2
1.3 Research Objectives 4
1.4 Research Scope 5

2 **LITERATURE REVIEW**
2.1 Introduction 6
2.2 Evapotranspiration Process 6
2.3 Reference Evapotranspiration (ET\textsubscript{O}) Concept 8
2.4 Evapotranspiration Measurement Methods 8
2.5 Mathematical Evapotranspiration Estimation Methods 12
2.5.1 FAO-56 Penman-Monteith (56PM) 14
2.5.2 FAO-56 PM Reduced-Set ET\textsubscript{O} 23
2.5.3 Temperature Based ET\textsubscript{O} Equations 25
2.5.4 Radiation Based Method 27
2.6 Comparative Studies Related to Empirical ET\textsubscript{O} Estimation Equations 29
2.7 Soft Computing 34
2.7.1 Artificial Neural Network 35
2.7.2 Fuzzy Logic 40
2.8 ANFIS Model 48
2.9 Gamma Test Technique 53
2.10 Genetic Algorithm 56
4.10.1 Applying the Developed ANFIS Model to another Location with Similar Type of Climate 124
4.10.2 Applying the developed ANFIS Model to another Location with Different Type of Climate 127
4.10.3 Modifying the Developed ANFIS to be Applicable under Several Types of Climates 128

5 CONCLUSIONS AND RECOMMENDATIONS 131

REFERENCES 133
BIO DATA OF STUDENT 141
LIST OF PUBLICATIONS 142