CONTINUOUS PRODUCTION OF JATROPHA CURCAS L. BIODIESEL USING OSCILLATORY FLOW BIODIESEL REACTOR

AZHARI

FK 2011 80
CONTINUOUS PRODUCTION OF *Jatropha Curcas* L. BIODIESEL USING OSCILLATORY FLOW BIODIESEL REACTOR

By

AZHARI

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirement for the Degree of Doctor of Philosophy

May 2011
CONTINUOUS PRODUCTION OF JATROPHA CURCAS L. BIODIESEL USING OSCILLATORY FLOW BIODIESEL REACTOR

By
AZHARI

May 2011

Chair: Associate Professor Robiah Yunus, PhD
Faculty: Engineering

Jatropha curcas L. biodiesel (methyl esters) was successfully synthesized from esterified Jatropha curcas L. oil (JCO) via transesterification process using an oscillatory flow reactor (OFR). Alkaline catalysts were used in this process, and the effects of operating variables such as molar ratio, reaction temperature, reaction time, and the percentage of catalyst loading were investigated. The reactions were carried out under atmospheric pressure. The reaction temperatures were varied between 50 to 70 °C. The effects of two alkaline catalysts namely potassium hydroxide (KOH) and sodium hydroxide (NaOH) and molar ratio of methanol to JCO on reaction yield were investigated. The optimum conditions for batch mode in the presence of KOH catalyst were as follows: reaction temperature at 65 °C, reaction time at 30 min, molar ratio at 6:1, and catalyst amount at 1.0% w/w. The maximum reaction conversion attainable using batch process was at 99%.
The design of the OFR was carried out based on the principle of maintaining geometric and dynamic similarity of various dimensionless groups. This was followed by the application of other empirical design correlations specific to the oscillatory flow system. Using the designed OFR, the transesterification of JCO was accomplished in the presence of KOH and NaOH catalysts at the optimal conditions of 60 °C, molar ratio at 6:1, reaction time of 15 min and oscillation frequency of 6 Hz. The maximum conversion obtained was 99.7% and 90% for KOH and NaOH catalysts, respectively. The OFR performed better than the batch reactor due to its advantages in achieving a perfect superimposed mixing of fluids by forcing the upstream into the baffles area, thus a shorter time was required to complete the reaction.

One of the major problems associated with the use of biodiesel, especially prepared from palm oil, is its poor low temperature flow property. *Jatropha curcas* L. biodiesel, however, has a good low temperature property, comparable to conventional biodiesel feedstock such as rapeseed oil. This is due to the fatty acid composition of JCO which is rich in oleic and linoleic acids. From the results of analysis done on the *Jatropha curcas* L. biodiesel, the pour point and the cloud point of the biodiesel were -10 °C and -6 °C, respectively. This indicates that the oil is suitable for winter grade biodiesel. Other quality tests also showed that the *Jatropha curcas* L. biodiesel meets the majority of the quality standards of both EN 14214 and ASTM D6751.

In addition, the kinetics study on transesterification of JCO with methanol had established that the kinetics were governed by two stepwise and irreversible
elementary reactions and conformed to follow the first order reaction model. The rate constants for the formation of intermediate diglycerides and the final product *Jatropha curcas* L. methyl esters (biodiesel) were determined at various temperatures. The values of k_{TG} ranged from 0.12 to 0.17 and the values of k_{DG} ranged from 0.13 and 0.20. The activation energies for stepwise reaction in transesterification of JCO with methanol ranged from 6.55 to 11.18 kcal/mol.

Simulation of three stepwise reversible reactions in the transesterification process was also carried out using MATLAB®. The results from the simulation indicated that the reaction rate constants were affected significantly by reaction temperature. At higher temperature, the rate constant for forward reactions (k_f) increased markedly with temperature while for the reverse reactions, the rate constant (k_r) was less affected by the temperature. This is evidenced by the smaller k_r values compared to k_f values. Based on the statistical analysis, the results showed good correlations with the experimental data based on SSE, RMSE and Chi-square (χ^2) values. The proposed model for kinetics of reversible transesterification process fitted well with the experimental data.
Biodiesel *Jatropha curcas* L. (metil ester) telah berjaya disintesiskan daripada esterifikasi minyak *Jatropha curcas* L. (JCO) melalui proses pentransesteran menggunakan reaktor aliran ayunan (OFR). Antara kajian yang dijalankan termasuklah penggunaan pemangkin alkali beserta mengenalpasti kesan pembolehubah di bawah tekanan atmosfera seperti nisbah molar, suhu tindakbalas, masa tindakbalas, dan peratusan jumlah pemangkin. Suhu tindakbalas tersebut diubah antara 50 hingga 70 °C. Kesan-kesan dua pemangkin alkali dinamakan sebagai kalium hidroksida (KOH) dan natrium hidroksida (NaOH) dan nisbah molar metanol kepada JCO ke atas tindakbalas pekali telah dikaji. Keadaan yang optimum untuk mod kelompok dengan kehadiran pemangkin KOH adalah seperti berikut: suhu tindakbalas pada 65 °C, masa tindakbalas pada 30 minit, nisbah molar pada 6:1
dan jumlah pemangkin pada 1.0% w/w. Jumlah Penukaran tindakbalas maksimum yang telah dicapai menggunakan proses kelompok ialah pada 99%.

Rekaan OFR telah digunakan berdasarkan prinsip pengekalan geometri dan persamaan dinamik daripada pelbagai kumpulan tanpa dimensi. Ini diikuti dengan aplikasi spesifik korelasi rekaan empirik yang lain terhadap sistem aliran ayunan. Dengan menggunakan OFR, pentransesteran daripada JCO dilengkapkan dengan kehadiran pemangkin KOH dan NaOH pada keadaan optimal 60 °C, nisbah molar pada 6:1, masa tindakbalas pada 15 minit dan frekuensi pusingan pada 6 Hz. Penukaran maksimum diperolehi pada 99.7% dan 90% untuk pemangkin KOH dan NaOH secara berturut-turut. Melalui proses OFR, pencampuran bendalir dapat dicapai dengan sempurna melalui pemaksan aliran atas ke dalam bahagian penampan yang menjadikan penyempurnaan tindakbalas dalam masa yang singkat dan menjadikan proses ini lebih baik dari reaktor berkelompok.

Satu daripada masalah besar yang dihadapi dengan kegunaan biodiesel terutamanya daripada minyak sawit ialah pengaliran yang sangat lemah pada suhu rendah. Walaubagaimanapun biodiesel *Jatropha curcas* L. mempunyai suhu rendah yang bagus jika dibandingkan dengan biodiesel yang kebiasaannya seperti minyak biji sawi. Ini berikut daripada komposisi asid lemak JCO di mana ia lebih kaya dengan asid oleik dan linoleik. Daripada keputusan analisis yang telah dibuat terhadap biodiesel *Jatropha curcas* L., takat tuang dan takat awan ialah -10 °C dan -6 °C secara berturut-turut. Ini menunjukkan minyak ini sesuai untuk gred biodiesel musim sejuk. Kualiti ujian yang lain juga menunjukkan biodiesel *Jatropha curcas* L. menepati standard kualiti untuk kedua-dua EN 14214 dan ASTM D6751.
Tambahan pula, kajian kinetik ke atas pentransesteran JCO dengan metanol telah menunjukkan kinetik dikawal oleh dua peringkat sintesis dan tindakbalas asas tak berbalik yang mematuhi model tindakbalas yang pertama. Kadar pemalar kepada pembentukan di antara diglyceride dan produk terakhir metil ester *Jatropha curcas* L. ditentukan pada suhu yang pelbagai. Nilai-nilai k_{TG} ialah julat antara 0.12 hingga 0.17 dan nilai-nilai k_{DG} ialah julat antara 0.13 hingga 0.20. Tenaga yang mengaktifan untuk tindakbalas dalam pentransesteran untuk JCO dengan metanol adalah julat antara 6.55 hingga 11.18 kcal/mol.

Simulasi tiga sintesis berperingkat tindakbalas berbalikkan dalam pentransesteran dilakukan dengan menggunakan MATLAB®. Keputusan daripada simulasi menunjukkan kadar pembolehubah tindakbalas diberi kesan daripada suhu tindakbalas. Pada suhu tindakbalas yang lebih tinggi, kadar pemalar untuk tindakbalas meningkat dengan suhu manakala tindakbalas yang berbalik, kadar pemalar memberi kesan yang kurang dengan tindakan suhu. Ini dibuktikan dengan nilai k_r dibandingkan dengan nilai k_f. Berdasarkan analisis statistik keputusan menunjukkan kolerasi yang baik dengan data ekperimen berdasarkan SSE, RMSE dan nilai Chi-square (χ^2). Model yang dicadangkan untuk proses kinetik pentransesteran berbalik, sangat sesuai dengan data eksperimen.
ACKNOWLEDGEMENTS

In the name of Allah, Most Gracious, Most Merciful

First of all, I would like to express my sincere gratitude and deep thanks to my supervisor, Assoc. Prof. Dr. Robiah Yunus for her guidance, suggestions, never-ending patience, kindness and willingness to assist me through the whole course of this research project. Without her valuable advice and support, it would not be possible for me to complete my research. I have learnt a lot of useful knowledge from her throughout this research. And also thanks to my co-supervisor, Assoc. Prof. Ir. Dr. Thomas Choong Shean Yaw and Dr. Tinia Idaty Mohd. Ghazi for their kindness assistances, supports, and suggestions so that this work could be completed properly and timely.

My high appreciation also goes to all lecturers and staff at the Department of Chemical and Environmental Engineering for their kind cooperation in providing all necessary facilities throughout the course of this study. Further gratitude also goes to my friends, especially Hamidah, Ummi, Saiful Hafiz, Ferra, Herliati, Shanti, Chong, Chang, Melina, Syuhada, Fatin, Nikman, Fatimah and Hassan for their guidance and motivation during the progress of this research.

viii
I am also grateful to Universiti Putra Malaysia for providing financial support under Graduate Research Fellowship.

Last but not least, my biggest inspiration, my late father, Muhammad Syam, my beloved mother, Siti Khatidjah, my dearest wife, Surisna binti Umar and my daughter, Sarah Tauhida for their continuous love, support and overwhelming encouragement to finish this project thesis.
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Robiah Yunus, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Thomas Choong Shean Yaw, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Member)

Tinia Idaty Mohd. Ghazi, PhD
Lecturer
Faculty of Engineering
Universiti Putra Malaysia
(Member)

HASANAH MOHD GHAZALI, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:

xi
DECLARATION

I declare that the thesis is my original work except for quotations and citations, which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institution.

AZHARI

Date: 9 May 2011
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1</td>
<td>Background</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Problem Statement</td>
<td>5</td>
</tr>
<tr>
<td>1.3</td>
<td>Objectives and Scopes of Work</td>
<td>9</td>
</tr>
<tr>
<td>1.4</td>
<td>Thesis Outline</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>LITERATURE REVIEW</td>
<td>12</td>
</tr>
<tr>
<td>2.1</td>
<td>Introduction</td>
<td>12</td>
</tr>
<tr>
<td>2.2</td>
<td>Biodiesel</td>
<td>13</td>
</tr>
<tr>
<td>2.3</td>
<td>Implications of Biodiesel on the Environment</td>
<td>16</td>
</tr>
<tr>
<td>2.4</td>
<td>Blending Technique</td>
<td>18</td>
</tr>
<tr>
<td>2.5</td>
<td>Economic Aspects</td>
<td>19</td>
</tr>
<tr>
<td>2.6</td>
<td>Other Uses of Biodiesel</td>
<td>22</td>
</tr>
<tr>
<td>2.7</td>
<td>Jatropha curcas L. Oil as Biodiesel Feedstock</td>
<td>23</td>
</tr>
<tr>
<td>2.8</td>
<td>Waste Feedstock</td>
<td>27</td>
</tr>
<tr>
<td>2.9</td>
<td>Continuous Process</td>
<td>28</td>
</tr>
<tr>
<td>2.10</td>
<td>Chemical Principles</td>
<td>29</td>
</tr>
<tr>
<td>2.11</td>
<td>Oscillatory Flow Reactor</td>
<td>30</td>
</tr>
<tr>
<td>2.12</td>
<td>Technology of Biodiesel Production</td>
<td>34</td>
</tr>
<tr>
<td>2.12.1</td>
<td>Esterification</td>
<td>34</td>
</tr>
<tr>
<td>2.12.2</td>
<td>Transesterification</td>
<td>36</td>
</tr>
<tr>
<td>2.12.3</td>
<td>Enzymatic Transesterification</td>
<td>40</td>
</tr>
<tr>
<td>2.12.4</td>
<td>Micro emulsions</td>
<td>43</td>
</tr>
<tr>
<td>2.12.5</td>
<td>Pyrolysis</td>
<td>45</td>
</tr>
<tr>
<td>2.12.6</td>
<td>Supercritical Methanol</td>
<td>48</td>
</tr>
<tr>
<td>2.13</td>
<td>Reaction Modeling and Mechanism</td>
<td>52</td>
</tr>
<tr>
<td>2.14</td>
<td>Analysis of Reaction Products</td>
<td>55</td>
</tr>
<tr>
<td>2.15</td>
<td>Effects of Operating Conditions</td>
<td>58</td>
</tr>
<tr>
<td>2.15.1</td>
<td>Temperature of Reaction</td>
<td>58</td>
</tr>
<tr>
<td>2.15.2</td>
<td>Ratio of Methanol to Oil</td>
<td>59</td>
</tr>
<tr>
<td>2.15.3</td>
<td>Catalysts Loading</td>
<td>60</td>
</tr>
<tr>
<td>2.15.4</td>
<td>Mixing Intensity</td>
<td>65</td>
</tr>
<tr>
<td>2.15.5</td>
<td>Reaction Time</td>
<td>66</td>
</tr>
</tbody>
</table>
2.16 Biodiesel Quality Standards 67
2.15.1 Biodiesel Stability 71
2.15.2 Cetane Improvers 74
2.17 Low Temperature Properties 75
2.18 Summary 78

3 METHODOLOGY 81
3.1 Introduction 81
3.2 Materials and Equipment 82
3.3 Design Methods for Chemical Reactor 83
3.4 Auxiliary Equipment 86
3.5 Experimental Procedures 86
3.5.1 Pretreatment of JCO 86
3.5.2 Free Fatty Acid Analysis 87
3.5.3 Synthesis of Jatropha curcas L. Biodiesel Using OFR 88
3.5.4 Separation of Product 92
3.5.5 Recycle of Excess Methanol from Methyl Esters 92
3.5.6 Removal of Catalyst 92
3.6 Kinetics Study 93
3.7 Analytical Procedures 94
3.7.1 Sample Preparation for GC Injection 94
3.7.2 Gas Chromatography 94
3.8 Reduction of Water Content 95
3.8.1 Vacuum Distillation 96
3.9 Low Temperature Properties 97
3.10 Other Analytical Standard Methods 100
3.10.1 Standard Test Method for Sulfur. ASTM D 129 100
3.10.2 Standard Method for Kinematics Viscosity. ASTM D 445-09 100
3.10.3 Standard Test Method for Flash Point. ASTM D 93-02a 101
3.10.4 Standard Method for Sulfated Ash. ASTM D 874 101
3.10.5 Standard Test Method for Cetane Index. ASTM D 976-66 102
3.10.6 Standard Test Method for Distillation Recovery. ASTM D 86-10 102
3.10.7 Standard Test Method for Density. ASTM D 4052-09 103
3.10.8 Standard Methods for Carbon Residue on 10%. ASTM D 189-76 103
3.10.9 Standard Test Method for Cloud Point. ASTM D 2500 – 66 104
3.10.10 Standard Test Method for Water by Distillation. ASTM D 95-99 104
3.10.11 Standard Test Method for Copper Corrosion. ASTM D 130 104
3.10.12 Standard Test Method for Carbon and Hydrogen. ASTM 777-08 105
ASTM 4591-09 105
ASTM 974-08e1 106
ASTM D 943–04a 107
3.10.16 Standard Test Method for Heat of Combustion of Liquid Hydrocarbon Fuels by Bomb Calorimeter. ASTM D240 107
3.10.17 Standard Test Method for Saponification Number of Petroleum Products. ASTM D94 108
3.11 Modeling of the Reaction Kinetics 108
3.12 Safety Precaution 109

4 DESIGN OF OSCILLATORY FLOW REACTOR SYSTEM 111
4.1 Introduction 111
4.2 Mass and Energy Balance 113
4.2.1 Mass Balance 114
4.2.2 Energy Balance 116
4.3 Mechanical Design 120
4.3.1 Corrosion Allowance 121
4.3.2 Design of Baffle and Tube 121
4.3.3 Design of the Heating Jacket 126
4.3.4 Design of Chemical Tank 127
4.3.5 Pump Specification 128
4.4 Materials of Construction 130
4.5 Control and Instrumentation 130

5 PRETREATMENT OF BIODIESEL FEEDSTOCK 132
5.1 Introduction 132
5.2 Free Fatty Acid Content in JCO 135
5.3 Decreasing of FFA Content 137
5.3.1 Effect of Reaction Temperature 138
5.3.2 Effect of Sulfuric Acid Concentration 139
5.3.3 Effect of Methanol to JCO Ratio 141
5.3.4 Effect of Reaction Time 142
5.4 Effect of FFA Content on Transesterification 144
5.5 Conclusion 145

6 BIODIESEL PRODUCTION VIA TRANSESTERIFICATION 146
6.1 Introduction 146
6.2 Transesterification in Stirred Batch Reactor 147
6.2.1 Effect of Methanol to JCO Molar Ratio 148
6.2.2 Effect of Reaction Temperature 149
6.2.3 Effect of Reaction Time 150
6.2.4 Effect of Catalyst Loading 152
6.3 Transesterification in OFR 154
6.3.1 Effect of Oscillation Frequency 154
6.3.2 Effect of Reactants Molar Ratio 157
6.3.3 Effect of Residence Time 158
6.3.4 Effect of Catalyst and Reaction Temperature 160
6.4 Conclusion 162

7 KINETICS OF REACTION AND MODELING 165
7.1 Introduction 165
7.2 Reaction Kinetics 167
7.3 Determination of Reaction Rate Constant 171
7.4 Determination of Activation Energy 177
7.5 Modeling of Reversible Reaction 179
 7.5.1 Derivation of Mathematical Model 181
 7.5.2 Model of Reversible Transesterification Reaction 183
7.6 Statistical Analysis of the Kinetics Model 189
7.7 Conclusion 191

8 BIODIESEL PROPERTIES TESTING 193
8.1 Introduction 193
8.2 Physical Properties of Biodiesel 195
 8.2.1 Density 196
 8.2.2 Kinematic Viscosity 196
 8.2.3 Pour Point 197
 8.2.4 Cloud Point 199
 8.2.5 Water Content 200
 8.2.6 Total Acid Number 200
 8.2.7 Saponification Number 201
 8.2.8 Iodine Value 203
 8.2.9 Calorific Value 203
 8.2.10 Flash Point 204
 8.2.11 Sulphated Ash 205
 8.2.12 Carbon Residue 206
 8.2.13 Cetane Index 207
 8.2.14 Copper Strip Corrosion 207
 8.2.15 Distillation Temperature 208
 8.2.16 Phosphorous 209
 8.2.17 Oxidative Stability 209
 8.2.18 Carbon and Hydrogen 211
8.3 Conclusion 212

9 CONCLUSION AND RECOMMENDATIONS 214
9.1 Conclusion 214
9.2 Recommendations 217

REFERENCES 219
APPENDICES 239
BIODATA OF STUDENT 272
LIST OF PUBLICATIONS 273