UNIVERSITI PUTRA MALAYSIA

DELINEATION OF KARST TERRAIN
USING RESISTIVITY METHOD

ZEINAB BAKHSHIPOUR

FK 2011 53
DELINEATION OF KARST TERRAIN USING RESISTIVITY METHOD

By

ZEINAB BAKHSHIPOUR

Thesis Submitted to the School of Graduate Studies, University Putra Malaysia, in Fulfillment of the Requirements for the Degree of Master of Science

March 2011
Abstract of thesis presented to the Senate of University Putra Malaysia in fulfillment of the requirement for the degree of Master of Science

DELINEATION OF KARST TERRAIN USING RESISTIVITY METHOD

By

ZEINAB BAKHSHIPOUR

March 2011

Chairman: Assoc. Prof. Husaini b. Omar, PhD

Faculty: Faculty of Engineering

This thesis describes the application of the Electrical Resistivity (ER) method in delineation subsurface of structures and cavity carried out in Kuala Lumpur Limestone within Batu Cave area, Selangor Darul Ehsan, Malaysia. The Kuala Lumpur limestone is well known for its highly erratic karst features. ER methods have proven to be efficacious in many studies involving environmental and engineering problems, and have been used in order to locate and delineate subsurface features and estimate the physical properties associated with the soil. In fact the major advantage of the ER method is that the soundings can be performed in a relatively short time and in a confined space. ER surveys can map high conductivity anomalies over filled sinkholes and soil pipes that penetrate the unconsolidated cover. Inverted ER sections made over these anomalies can depict filled sinkholes, fractures and cavities as conductive zone over deeply weathered bedrock.
Wenner electrode configuration was employed for the field survey which was carried out for seventeen profiles to provide continuous coverage. The ER profiles (1520m in total length) were measured using a Wenner electrode configuration with 2m spacing. Color-modulated sections of resistivity versus depth were plotted for all lines, giving an approximate image of the subsurface structure. The field survey was accompanied by laboratory work. The resistivity of rock, soil and water samples taken from the field was determined in the laboratory and resistivity formation factors were obtained. The relationship between resistivity and formation factors for all samples was established.

The porosity of each sample was also calculated and a relationship between the porosity and formation factor was established. The established relationship was applied to the data obtained in the field in order to calculate the porosity values of the formation present within the exploration area. The porosity values were plotted and contoured. Depth to the bedrock for each line was obtained from the electrical resistivity in the field work. A 2-dimensional (2D) and 3-dimensional (3D) representation of the subsurface topography of the area was prepared using commercial computer software. The use of the software also enabled visualization of the subsurface features of the limestone investigated in the present work.
Abstrak tesis ini dikemukakan kepada Senat Universiti Putra Malaysia untuk memenuhi keperluan ijazah Master Sains

PENANDAAN KAWASAN KARST MENGGUNAKAN KAEDAH KERINTANGAN ELEKTRIK

Oleh

ZEINAB BAKHSHIPOUR

Mac 2011

Chairman: Assoc. Prof. Husaini b. Omar, PhD

Faculti: Kejuruteraan

dapat mengesan “lubang benam”, retakan dan kaviti yang terletak di otas lapisan batuan terlulusluhawa kerana permukaan tersebut adalah zon konduktif.

Konfigurasi elektrod Wenner telah digunakan dalam penyiasatan tapak dalam kajian ini untuk mendapatkan data bagi 17 profil tanah supaya permukaan tanah dapat dianggarkan secara keseluruhan. Profil RE (jumlah panjang sebanyak 1520 m) telah diukur dengan menggunakan konfigurasi elektrod Wenner dengan jarak selang 2 m. Seksyen modul-berwarna yang menunjukkan data resistiviti berlawanan dengan kedalaman tanah telah di plot untuk sampel kesemua garisan, dengan memberikan anggaran imej struktur permukaan tanah. Penyiasatan tapak ini telah dilakukan bersama dengan kajian makmal. Resistiviti untuk sampel batu, tanah dan air yang diambil daripada kawasan kajian telah ditentukan di makmal dan factor formasi resistiviti telah dihasilkan. Hubungan resistiviti dan faktor formasi untuk kesemua sampel telah ditentukan.

ACKNOWLEDGMENTS

It is with great contentment I give thanks to the Almighty God, for showing his blessings at the completion of my research work.

I suppose is a privilege to express a few words of gratitude about my supervisory committee Assoc. Prof. Dr. Hussaini Omar, my Supervisor, Assoc. Prof. Dr. Shaharin Ibrahim and Dr. Zainuddin Md.Yusof as Co Supervisor. They have guided me through their inspiring advice, and their unending quest for knowledge in accomplishing my task. They have been a guiding star in enlightening me of all the minutes’ detail of my work. I am deeply indebted for their mental support as well.

I am especially thankful to my parents, Ali and Ashraf, for their financial and strong mental supports. Also thanks my dear brothers (Amir Hossein and Ehsan) and my dear sister (Zahra), especially Ehsan for their words of encouragement in the hard time of my study.

My deep acknowledgment is duly expressed to Dr. Majid Mirzaei in university of Iran for their guides and advice at each stage of my work.

I gratefully acknowledge the staff in Environment Faculty Mr Ghaffar. I take this opportunity to thank all my friends in Malaysia especially in Geotechnical Department that have help me all throughout this study and lonely time in Malaysia.
In last but not least, I am thankful to Engineering, Environment and Science Faculty Universiti Putra Malaysia. I hope Allah pay back all of their kindness that I have received during all these years.
I certify that a Thesis Examination Committee has met on 11-3-2011 of viva voce to conduct the final examination of Zeinab Bakhshipour on her thesis entitled “Delineation of Karst Terrain by Using Resistivity Method” in accordance with Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master of Science.

Members of the Thesis Examination Committee were as follows:

Name of Chairperson
Assoc. Prof. Dr. Ratnasamy Muniandy
Faculty of Engineering
Universiti Putra Malaysia (UPM)
(Chairman)

Name of Examinor 1
Professor Dr. Bujang kim Huat
Faculty of Engineering
Universiti Putra Malaysia (UPM)
(Internal Examinor)

Name of Examiner 2
Ir. Azlan b. Abdul Aziz
Faculty of Engineering
Universiti Putra Malaysia (UPM)
(Internal Examiner)

Name of Examiner 3
Assc. Prof. Dr. Fauziah Ahmad
Civil Department and Faculty of Engineering
Universiti Science Malaysia (USM)
(External Examiner)

SHAMSUDDIN SULAIMAN, PHD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

2011
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Master of Science. The members of the Supervisory committee were as follows:

Hussaini Omar, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Shaharin Ibrahim, PhD
Professor
Faculty of Environmental Studies
Universiti Putra Malaysia
(Member)

Zainuddin Md.Yusof, PhD
Lecturer
Faculty of Engineering
Universiti Putra Malaysia
(Member)

HASANAH MOHD GHAZALI, PHD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

I declare that the thesis is my original work except for quotations and citation which have been duly acknowledged. I also declare that it has not been previously and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or other institution.

ZEINAB BAKHSHIPOUR

Date: 11-March-2011
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>I</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>III</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>V</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>VII</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>IX</td>
</tr>
<tr>
<td>LIST OF TABLE</td>
<td>XIV</td>
</tr>
<tr>
<td>LIST OF FIGURE</td>
<td>XV</td>
</tr>
<tr>
<td>LIST OF ABBREVIATION</td>
<td>XXI</td>
</tr>
</tbody>
</table>

CHAPTER 1

INTRODUCTION
1.1 General
1.2 Objectives of Thesis
1.3 Problem of Statement
1.4 Significant of the Study
1.5 Limitation of the Study
1.6 Thesis Layout

CHAPTER 2

LITERATURES REVIEW
2.1 Introduction
2.2 Definition of karst
2.2.1 Natural Formation of Karst
2.2.2 Regional Distribution of Karst
2.2.3 Limestone Formation in Malaysia
2.2.4 Kuala Lumpur Limestone
2.3 Karst Features in Geotechnical Engineering
2.3.1 Pinnacles
2.3.2 Cavities
2.3.3 Linear Trenches in Bedrock
2.3.4 Earth Subsidence
2.3.5 Slump Zone
2.3.6 Sinkholes
2.4 Subsurface Karst Features Associated with Geotechnical Problems
2.5 Geophysical Methods
2.5.1 Introduction
2.5.2 Integration of Geophysical Method
2.6 Electrical Resistivity Method
2.6.1 Introduction
2.6.2 Traditional Resistivity Surveys 34
2.6.3 The Relationship between Geology and Resistivity 36
2.6.4 Earth Electrical Resistivity Method 38
2.7 Different Array in Resistivity 39
 2.7.1 Wenner Array 39
 2.7.2 Dipole-Dipole Array 42
 2.7.3 Schlumberger Array 43
2.8 Advantages and Disadvantages of the Different Arrays 43
2.9 Electrical Imaging Surveys 46
2.10 Field Survey Method 47
2.11 Pseudosection Data Plotting Method 49
2.12 Total Porosity and Effective Porosity 51
 2.12.1 Total or Absolute Porosity 51
 2.12.2 Effective Porosity 51
 2.12.3 Determination of Effective Porosity of the Core Samples 53
2.13 Weathering Classification of Rock Material 53
2.14 Result of Geophysical Survey in Malaysia 54
 2.14.1 ER Survey, Microgravity and Borehole in Batu Cave Area By Abdul Rahim Samsudin (1999) 54
 2.14.2 ER Survey in Batu Cave Area by Abu-Shariah (2009) 59

3 METHODOLOGY
3.1 Study Area of Batu Cave 62
 3.1.1 Location 62
 3.1.2 Short Description of Batu Cave 64
 3.1.3 History of Batu Cave 66
 3.1.4 Archaeology 67
3.2 Procedure for Field Data Collection and data Processing 67
 3.2.1 Field Data Collection Procedure 67
 3.2.2 Processing the Field Resistivity Data with the Aid of Computer 69
 3.2.3 Software Utility 70
 3.2.4 Collection of Soil Samples in the Study Area 74
 3.2.5 Collection of Rock and Water Samples 75
3.3 Laboratory Determination 76
 3.3.1 Introduction 76
 3.3.2 Selection and Preparation of Rock Core Samples 76
 3.3.3 Cleaning of the Sample 77
 3.3.4 Drying of Samples 78
 3.3.5 Weighing Samples and Volume Determination 79
 3.3.6 Saturation of Samples 80
3.4 Calculation of Effective Porosity 81
3.5 Measurements of Parameters on Soil Samples 82
 3.5.1 Porosity 82
 3.5.2 Determination of Particle Density 83
 3.5.3 Determination of Moisture Content 85
 3.5.4 Oven Drying Method 85
 3.5.5 Determination of Bulk Density 86
3.6 Particle Size Distribution of Soil Samples 87
 3.6.1 Introduction 87
 3.6.2 Determination of Particle Size Distribution 87
 3.6.3 Unified Soil Classification System (USCS) 88
3.7 Determination of Electrical Resistivity of the Rock Samples 91
 3.7.1 Preparation of Core Samples 92
 3.7.2 Core Sample Saturation with Electrolyte Solutions 93
 3.7.3 Measurements Resistivity of the Water and Soil Sample in the Laboratory 94
 3.7.4 Formation Factor 95

4 RESULT AND DISCUSSION
4.1 Introduction 98
4.2 Laboratory Result and Discussion 99
 4.2.1 Distinction of Soil Samples with Sieve Analysis 99
4.3 Classification of Rock and Soil in the Study Area 100
4.4 Effective of porosity and resistivity from laboratory 103
 4.4.1 Effective Porosity 103
 4.4.2 Variation of Electrical Resistivity, Formation Factor and Fractional Porosity of Earth Material from the Batu Cave 104
4.5 Interpretation of 2Dimensional electrical resistivity imaging 109
 4.5.1 Borehole Geological Log and Other Geophysical Result Near to the Study Area 111
 4.5.2 Batu Cave Line 1 111
 4.5.3 Batu Cave Line 2 113
 4.5.4 Batu Cave Line 3 114
 4.5.5 Batu Cave Line 4 115
 4.5.6 Batu Cave Line 5 116
 4.5.7 Batu Cave Line 6 117
 4.5.8 Batu Cave Line 7 118
 4.5.9 Batu Cave Line 8 119
 4.5.10 Batu Cave Line 9 120
 4.5.11 Batu Cave Line 10 121
4.5.12 Batu Cave Line 11 122
4.5.13 Batu Cave Line 12 123
4.5.14 Batu Cave Line 13 124
4.5.15 Batu Cave Line 14 125
4.5.16 Batu Cave Line 15 126
4.5.17 Batu Cave Line Kampong Melayu Wira Damai (Near the Cliff Face of the Limestone Hill) 127
4.5.18 Jalan Batu Cave, Jalan Ipoh, Jalan Seven (Near the River) 129

4.6 Porosity Distribution along Electrical Resistivity Imaging 130
4.6.1 Batu Cave Line 1 131
4.6.2 Batu Cave Line 2 132
4.6.3 Batu Cave Line 3 133
4.6.4 Batu Cave Line 4 134
4.6.5 Batu Cave Line 5 135
4.6.6 Batu Cave Line 6 137
4.6.7 Batu Cave Line 7 138
4.6.8 Batu Cave Line 8 139
4.6.9 Batu Cave Line 9 140
4.6.10 Batu Cave Line 10 141
4.6.11 Batu Cave Line 11 142
4.6.12 Batu Cave Line 12 143
4.6.13 Batu Cave Line 13 145
4.6.14 Batu Cave Line 14 145
4.6.15 Batu Cave Line 15 146
4.6.16 Batu Cave Line Kampong Melayu Wira Damai (Near the Cliff Face of the Limestone Hill) 147
4.6.17 Jalan Batu Cave, Jalan Ipoh, Jalan Seven (Near the River) 148

4.7 Subsurface Topographic Futures of the Limestone Obtained in the Study Area 149

5 CONCLUSION AND RECOMMENDATION
5.1 Conclusions 153
5.2 Accomplishment of the Present Work 155
5.3 Recommendations for Future Work 157

REFERENCES 158
APPENDIXES 168
Appendixes 1: Laboratory Investigation 168
Appendixes 2: Some Pictures of Field Work 173
Appendixes 3: Some Pictures of Laboratory Work 177
LIST OF PUBLICATION 181
BIODTA OF STUDENT 182