APPLICATION OF HYDRO-METEOROLOGICAL MODEL AND GIS IN SHORT RANGE SEVERE FLOOD FORECASTING AND MAPPING

By

LAWAL BILLA

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia in Fulfilment of the Requirement for the Degree of Doctor of Philosophy

May 2006

DEDICATION

To my dear Parents, Brother and Sisters your patients and

support has been my motivation

&

To the rest of my extended families your encouragement has seen

me through this long journey

I love you all

Abstract of the thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy

APPLICATION OF HYDRO-METEOROLOGICAL MODEL AND GIS IN SHORT RANGE SEVERE FLOOD FORECASTING AND MAPPING

By

LAWAL BILLA

May 2006

Chairman: Professor Shattri Bin Mansor, PhD

Faculty: Engineering

Floods resulting from severe seasonal monsoon rainfall are the most important significant natural disaster affecting Malaysia in terms of their impact on the economic, damage to property and sometimes-tragic losses of lives. One of the greatest deficiencies of the current flood models used in the country is the inability to provide cloud and mesoscale rainfall information in the earliest portion of 0-6h of their forecasting period. In this study NOAA- AVHRR and GMS satellite data were processed for grid based rainfall and rainfall intensity mapping to improve short-range quantitative precipitation forecasting (QPF) of severe monsoon weather and also to facilitate the assimilation of QPF into operational flood forecasting.

A 1D cloud model based QPF modeling process was developed, that relates cloud top temperature below 235° K, reflectance above 28% and cloud heights above 12000m with tropical rainfall formation within the range of 3-12 mm/hr. A grid based rainfall intensity map was thus produced for Langat River Basin. High correlations of R² above 0.75 were observed for cloud top temperature processed from GOES data and recorded rainfall of severe monsoon weather of selected stations in Terengganu, Kuantan and Kota Bahru.

Hydrodynamic and rainfall-runoff simulation were performed using MIKE 11 hydrological model and a suitably auto-calibrated NAM runoff model. The hydrological model was tested for rainfall runoff process using observed hourly rainfall data for the flood event of 27 Sept. to 8 Oct. 2000 as well as rainfall estimation derive from the cloud model QPF using hourly GMS temperature reading for the same storm period. The rainfall- runoff hydrographs generated for the two rainfall sources showed similarities with R^2 of 0.9028.

The results of the runoff modeling were integrated in MIKE11 GIS model for flood inundation mapping. Separate inundation maps were generated for the observed rainfall and the QPF derive rainfall runoff results for comparison. The accuracies of both maps were verified using grid point location data for flooded areas published in the DID Annual Flood Report. The verification results showed an accuracy of 70% for both flood maps.

The methods and processes developed by this study are flexible enough to be applied in other mesoscale and severe storm forecasting particularly a tropical setting. In using NOAA satellite, AVHRR data can be received and processed in advance of 6h of the actual rainfall event. This study should thus prove very useful for the assimilation of grid based rainfall intensity into and improve short- range operational flood forecast. Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

APLIKASI MODEL HIDRO-METEOROLOGIKAL DAN GIS DALAM PEMETAAN DAN RAMALAN JANGKA PENDEK BANJIR BESAR

Oleh

LAWAL BILLA

Mei 2006

Pengerusi: Profesor Shattri bin Mansor, PhD

Fakulti: Kejuruteraan

Banjir yang berasal daripada hujan lebat monson bermusim merupakan bencana alam yang sangat penting dan signifikan terhadap Malaysia dari segi kesan ekonomi, kerosakan harta benda dan kehilangan nyawa. Di antara kekurangan model-model banjir yang sedia ada adalah ketidakupayaan menyediakan data awan dan hujan berskala meso enam jam sebelum banjir berlaku. Di dalam kajian ini data satelit NOAA-AVHRR diproses untuk menghasilkan grid lokasi hujan serta intensiti hujan untuk meningkatkan ramalan presipitasi kuantitatif (QPF) bagi cuaca monson dalam jangkamasa pendek dan juga untuk memudahkan kemasukkan QPF dalam ramalan banjir secara operasional.

Pemodelan proses QPF berasaskan model awan 1D dibangunkan dan berhubungkait terhadap suhu atas awan (< 235°K), pembalikan awan (> 28%) dan ketinggian awan (<12000m) dengan hujan tropika di antara 3-12mm/hr. Kemudian peta intensiti hujan kawasan kajian – lembangan Sungai Langat telah dihasilkan. Korelasi R² yang tinggi melebihi 0.75 didapati daripada suhu atas awan daripada data GOES yang telah

diproses dan hujan bagi cuaca monson yang direkod di stesen Terengganu, Kuantan dan Kota Bharu.

Simulasi hidrodinamik dan aliran permukaan-hujan dilaksanakan dengan menggunakan model MIKE 11 dan model auto-kalibrasi NAM. Model hidrologikal ini diuji menggunakan data cerapan hujan setiap jam bagi tempoh banjir dari 27 September hingga 8 Oktober 2000. Anggaran hujan sekali lagi dikomputkan berasaskan kepada QPF daripada bacaan suhu data GMS setiap jam dan digunakan untuk simulasi banjir yang melanda. Hidrograf aliran permukaan hujan yang terjana untuk dua sumber hujan menunjukkan kesamaan dengan \mathbb{R}^2 - 0.9028.

Model aliran permukaan yang dihasilkan daripada kedua-dua sumber hujan seterusnya digunakan untuk menghasilkan peta banjir dan diintegrasikan ke dalam MIKE11 GIS. Peta banjir yang dijana daripada cerapan hujan dan simulasi hujan QPF dibandingkan. Ketepatan kedua-dua peta disahkan menggunakan data lokasi titik grid bagi kawasan banjir yang diterbitkan di dalam laporan tahunan banjir (JPS). Ketepatan kedua-dua jenis peta banjir yang dicapai adalah 70%.

Kaedah dan proses yang dibangunkan di dalam kajian ini adalah mencukupi untuk diaplikasikan dalam skala meso dan ramalan hujan lebat di dalam kawasan tropika yang lain. Data NOAA-AVHRR boleh diperolehi dan diproses untuk ramalan hujan enam jam sebelum kejadian banjir. Kajian ini membuktikan kepentingan assimilasi grid berasaskan intensiti hujan dan meningkatkan jarak operasi ramalan banjir dengan kadar masa yang lebih panjang.

ACKNOWLEDGEMENTS

My sincere thanks and gratitude goes to the members of the supervisory committee, Prof. Shattri bin Mansor, Assoc. Prof. Ahmad Rodzi Mahmud and Assoc. Prof. Abdul Halim Ghazali for the advice, guidance and support throughout this study. My appreciation and thank also goes to members of research team of the GIS and Geomatic Engineering Unit, include Assoc. Professors. A.R.M. Sheriff, N. Ahmad, R. Mispan and Dr. Helmi and not forgetting Prof. M. Ibrahim, without their valuable advice and encouragement this study wouldn't have reached this fruitful end.

Special thanks are also due to Prof. Kamaruzaman Jusof for his kindness and help. To Mr. T. H. Wong, Mr. K. F. Loh and my study colleagues and Lab mates, your technical advice and friendship has fostered the exchange of knowledge and ideas. Not forgetting my dearest Golnaz Rezai whose friendship I deeply cherish.

To the science and technical officers of SNML and ITMA and not forgetting the faculty of engineering particularly the GIS and Geomatic Engineering Unit, many thanks for the instruction and provision of a good academic and research environment without which this study wouldn't have been possible.

Finally, thanks are due to the Malaysia Meteorological Service (MMS) and Malaysian Drainage and Irrigation Department (DID) for proving the necessary and required meteorological and hydrological data used in the study. And last but not the least to Universiti Putra Malaysia (UPM) for given me the opportunity to further my study in this university.

I certify that and Examination Committee has met on 10 May 2006 to conduct the final examination of Lawal Billa on his Doctor of Philosophy thesis entitled "Application of Hydro-Meteorological Model and GIS in Short Range Severe Flood Forecasting and Mapping" in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Mohd. Saleh B. Jaafar, PhD

Associate Professor Faculty of Engineering Universiti Putra Malaysia (Chairman)

Thamer Ahmed Mohamed, PhD

Associate Professor Faculty of Engineering Universiti Putra Malaysia (Internal Examiner)

Helmi Zulhaidi Mohd. Shafri, PhD

Lecturer Faculty of Engineering Universiti Putra Malaysia (Internal Examiner)

Peter Atkinson, PhD

Professor School of Geography University of Southampton (External Examiner)

HASANAH MOHD. GHAZALI, PhD

Professor/Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date:

This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee are as follows:

Shattri Bin Mansor, PhD

Professor Faculty of Engineering Universiti Putra Malaysia (Chairman)

Ahmad Rodzi Mahmud, PhD

Associate Professor Faculty of Engineering Universiti Putra Malaysia (Member)

Abdul Halim Ghazali, PhD

Associate Professor Faculty of Engineering Universiti Putra Malaysia (Member)

> AINI IDERIS, PhD Professor/ Dean School of Graduate Studies Universiti Putra Malaysia

Date:

DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institution.

LAWAL BILLA

Date:

TABLE OF CONTENTS

DEDICATION	ii
ABSTRACT	iii
ABSTRAK	v
ACKNOWLEDGEMENTS	vii
APPROVAL	viii
DECLARATION	Х
LIST OF TABLES	xiv
LIST OF FIGURES	XV
LIST OF ABBREVIATIONS	xix

CHAPTER

1

INT	RODUCTION	1.1
1.1	Introduction	1.1
1.2	Problem Statement	1.7
1.3	Goal and Objectives	1.8
1.4	Scope of the Study	1.10
1.5	Significant of the Study	1.10
1.6	Thesis Organization	1.11

2	LITE	ERATU	RE REVIEW	2.1
	2.1	Introdu	uction	2.1
	2.2	Flood	Disaster Management	2.1
	2.3	Spatia	l Information Technology Application in	
		Flood	Disaster Management	2.4
		2.3.1	GIS Application in Flood Monitoring	2.5
		2.3.2	Remote Sensing and Satellite Data	
			Application in Flood Monitoring	2.6
	2.4	Meteo	rological Satellite data Application in	
		Rainfa	Ill Forecasting	2.7
		2.4.1	Cloud Information Used in Operational	
			Forecasting	2.10
		2.4.2	Meteorological Satellite Data in Rainfall	
			Estimation	2.11
		2.4.3	Infrared and Near Infrared Channels in	
			Rainfall Estimation	2.12
		2.4.4	Assimilation of Satellite Data Derive	
			Rainfall Estimate in Nowcasting	
			Application for Flood Forecasting	2.13
	2.5	Cloud	Based Rainfall Estimation Methods	2.18
		2.5.1	Cloud indexing techniques	2.19
		2.5.2	Cloud model-based techniques	2.21

2.6	Hydro	logical GIS and Computer Models for	
	Waters	shed Hydrology	2.24
	2.6.1	HEC1 Model	2.26
	2.6.2	SSARR Model	2.28
	2.6.3	MIKE 11 Integrated Generalized River	
		Modeling System	2 30
2.7	Flood	Disaster Problem and Management in	
	Malay	sia	2.34
	2.7.1	Cost of Flood Management	2.37
	2.7.2	Flood controls and Management Strategies	
		in Malavsia	2.38
	2.7.3	Flood Forecasting and Warning Service in	
		Malaysia	2.39
2.8.	Case S	Study of the GEOREX Flood Forecasting	
	System	n of Malaysia	2.41
	2.8.1	Components of the GEOREX	2.42
	2.8.2	Data Collection and Processing for the	
		GEOREX System	2.44
	2.8.3	Shortcomings of Georex and Other	
		Forecasting Systems in Malaysia	2.45
	2.8.4	Integrated flood forecasting studies	2.46
		0	
2.9	Sumr	nary	2.48
		·	
МАТ	ERIAL	S AND METHODS	3.1
3.1	Introdu	uction	3.1
3.2	Study	Area.	3.1
0	3.2.1	Climate and Hydrology	3.3
	3.2.2	Topography and Geology	3.4
	3.2.3	Land Use and Population	3.5
3.3	Nowca	asting and Flood Early Warning Design	3.7
	3.3.1	Data Requirement for the Nowcasting	
		Early Warning System	3.10
3.4	Ouanti	itative Precipitation Forecasting from	
	NOAA	A-AVHRR	3.11
	3.4.1	NOAA AVHRR Data	3.13
	3.4.2	Data Acquisition and Correction	3.13
	· · · · -	1	
	3.4.3	Processing for Reflectance and Brightness	
	3.4.3	Processing for Reflectance and Brightness Temperature	3.15
	3.4.3 3.4.4	Processing for Reflectance and Brightness Temperature High Cloud Classification and Screening	3.15
	3.4.3 3.4.4	Processing for Reflectance and Brightness Temperature High Cloud Classification and Screening for Non-precipitating Cloud	3.15 3.18
	3.4.3 3.4.4 3.4.5	Processing for Reflectance and Brightness Temperature High Cloud Classification and Screening for Non-precipitating Cloud Mean Area Rainfall Based on AVHRR	3.15 3.18
	3.4.3 3.4.4 3.4.5	Processing for Reflectance and Brightness Temperature High Cloud Classification and Screening for Non-precipitating Cloud Mean Area Rainfall Based on AVHRR Data	3.15 3.18 3.20
	3.4.3 3.4.4 3.4.5 3.4.6	Processing for Reflectance and Brightness Temperature High Cloud Classification and Screening for Non-precipitating Cloud Mean Area Rainfall Based on AVHRR Data Validation of Rainfall Intensity Model	3.153.183.203.22
3.5	3.4.3 3.4.4 3.4.5 3.4.6 MIKE	Processing for Reflectance and Brightness Temperature High Cloud Classification and Screening for Non-precipitating Cloud Mean Area Rainfall Based on AVHRR Data Validation of Rainfall Intensity Model 11 Rainfall Runoff and Hydrodynamic	3.153.183.203.22
3.5	3.4.3 3.4.4 3.4.5 3.4.6 MIKE Model	Processing for Reflectance and Brightness Temperature High Cloud Classification and Screening for Non-precipitating Cloud Mean Area Rainfall Based on AVHRR Data Validation of Rainfall Intensity Model 11 Rainfall Runoff and Hydrodynamic ing	3.153.183.203.223.22
3.5	3.4.3 3.4.4 3.4.5 3.4.6 MIKE Model 3.5.1	Processing for Reflectance and Brightness Temperature High Cloud Classification and Screening for Non-precipitating Cloud Mean Area Rainfall Based on AVHRR Data Validation of Rainfall Intensity Model 11 Rainfall Runoff and Hydrodynamic ing Rainfall Runoff (RR) Simulation	 3.15 3.18 3.20 3.22 3.22 3.22 3.23
3.5	3.4.3 3.4.4 3.4.5 3.4.6 MIKE Model 3.5.1 3.5.2	Processing for Reflectance and Brightness Temperature High Cloud Classification and Screening for Non-precipitating Cloud Mean Area Rainfall Based on AVHRR Data Validation of Rainfall Intensity Model 11 Rainfall Runoff and Hydrodynamic ing Rainfall Runoff (RR) Simulation NAM Model Calibration for Langat Basin	 3.15 3.18 3.20 3.22 3.22 3.23 3.25
3.5	3.4.3 3.4.4 3.4.5 3.4.6 MIKE Model 3.5.1 3.5.2 3.5.3	Processing for Reflectance and Brightness Temperature High Cloud Classification and Screening for Non-precipitating Cloud Mean Area Rainfall Based on AVHRR Data Validation of Rainfall Intensity Model 11 Rainfall Runoff and Hydrodynamic ing Rainfall Runoff (RR) Simulation NAM Model Calibration for Langat Basin Hydrodynamic (HD) Simulation	3.15 3.18 3.20 3.22 3.22 3.23 3.25 3.27

3

	3.6	Hydrol	logical GIS Development and Flood	2.20
			ng Disital Tanain / Elasatian Madalina	3.28
		3.0.1	Digital Terrain / Elevation Modeling	3.29
		3.6.2	Flood Mapping and Assessment	3.32
		3.6.3	Verification of Flood Mapping Results	3.33
4	RES	ULTS AI	ND DISCUSSION	4.1
-	4.1	Introdu	iction	4.1
	4.2	Results	s of the OPF Using NOAA AVHRR Data	4.1
		4.2.1	AVHRR Data Correction	4.2
		4.2.2	Cloud Top Height, Reflectance and	
			Temperature Modeling	4.3
		4.2.3	Reflectance and Brightness Temperature	110
		1.2.10	Processing	4.4
		424	Basin Scale Rainfall Intensity Modeling	
			and K-means Classification	4.10
		4.2.5	Rainfall Estimate and Grid Based OPF	4.13
		4.2.6	12 Day Flood Event Kajang (27 th September	
			to 08^{th} October 2000)	4.17
		4.2.7	Verification of the Relationship btw CTT	
			and Observed Rainfall	4.19
	4.3	Rainfa	ll-runoff and Hydrodynamic Simulation	
		Using	MIKE 11River Modeling System	4.22
		4.3.1	Model Calibration and Rainfall Runoff	
			Simulation	4.22
		4.3.2	Hydrodynamic Simulation of Water Level	4.30
		4.3.3	Discharge Simulation	4.33
	4.4	DEM a	and Flood Mapping Results	4.37
		4.4.1	Flood Inundation Mapping and Flood	
			Assessment	4.38
		4.4.2	Verification of Flood Maps	4.43
	4.5	Improv	vement of Flood Forecasting and	
		Manag	ement System in Malaysia	4.46
5	SUM	MARY	AND CONCLUSION	5.1
c	5.1	Summa	arv	5.1
	5.2	Conclu	ision	5.3
	5.3	Further	r Extension of the Study	5.4
REF	FEREN	CES		R.1
APP	PENDIC	ES		A.1
BIODATA OF THE AUTHOR B.1				

LIST OF TABLES

Table		Page
1.1	Attribute Information of AVHRR data	1.5
2.1	Flood Mitigation Expenditure	2.37
3.1	Land Use Change 1997-2001	3.7
3.2	Data Requirement for Nowcasting and Flood Early Warning System	3.10
3.3	Cloud Types and General Characteristics	3.13
4.1	Relationship btw Reflectance, Temperature and Assigned Rain-rates	4.14
4.2	GMS CTT, Observed and QPF Estimated Rainfall for Kajang	4.18
4.3	Descriptive Statistics of Rainfall and QPF	4.19
4.4	NAM Calculation of Langat Sub-catchments Area	4.23
4.5	NAM Calibration Parameters of Langat Sub-catchments	4.26
4.6	Model Length and Cross Section of Langat River and Tributaries	4.34
4.7	Calculation of Total Flood Area	4.39
4.8	Comprehensive Flood Forecasting and Management Plan for Malaysia	4.48

LIST OF FIGURES

Figure

-		Page
1.1	Flooding in Malaysia	1.2
2.1	Nowcasting Range in Relation to NWP Models	2.14
2.2	Data Flow in Flood Modeling System for GIS Hazard Mapping	2.25
2.3	Mike 11 Rainfall and Runoff Induce Floods Model	2.32
2.4	The Structure of Flood Watch	2.33
2.5	GEOREX Flood Forecasting System of Malaysia	2.42
2.6	GEOREX System Component	2.43
3.1	Location Map of Langat River Basin	3.2
3.2	Average Monthly Rainfall of Langat River Basin Area	3.4
3.3	Land use for Langat Basin 2001	3.6
3.4	Schematic of the Nowcasting and Flood Early Warning System	3.9
3.5	Flow Chart of QPF Model	3.12
3.6	Monsoon AVHRR data (31 st May 2003)	3.14
3.7	Correlation btw Radar Rain Rate and GOES Temperature	3.15
3.8	Level of Reflection (Albedo)	3.17
3.9	Brightness Temperatures in Degree Kelvin	3.18
3.10	Classifications and Delineation of High Cloud	3.19
3.11	Screening of Cirrus Non-precipitating Clouds	3.19
3.12	Langat Basin Scale K means Classification of $T_{\rm B}$	3.21
3.13	Langat Basin Sub-catchments and Rainfall Stations	3.24
3.14	Calibration Parameters in MIKE11	3.26
3.15	MIKE 11 Cross Sections Editor and Section for Langat River	3.27

3.16	Langat Basin Hydrological GIS Data	3.28
3.17	3D Perspective of the Langat Basin Surface Terrain	3.30
3.18	Flood Plain Surface and River Geometry	3.31
3.19	Integration of Hydrological Simulation Results with DEM	3.32
4.1	Subset of the Geocoded AVHRR Data of Malaysia	4.3
4.2	Reflectance (<i>Ref</i>) at Langat Basin Scale	4.5
4.3	$T_{\rm B}$ in Degree Kelvin at Langat Basin Scale	4.6
4.4	Scatter Plot of Masked Reflectance and Temperature Channels in Processed AVHRR Data	4.7
4.5	Percentage CTR in Relation to CTT at 235°K Threshold	4.7
4.6	Rainfall Distribution based on Localized Maxima of CTR	4.9
4.7	Cloud Fraction with the Probability to Precipitate	4.11
4.8	Precipitating Cloud Pixel at Catchment Scale	4.11
4.9	K-means Classification	4.12
4.10	Rainfall Intensity Based on K-means Classes	4.14
4.11	QPF Model grid Based Rainfall	4.15
4.12	Grid Based Pixel Count of Classification	4.16
4.13	GOES CTT and Rainfall at Kajang Station, 2000	4.19
4.14	Correlation btw GMS CTT and Observed Rainfall for St. 45615	4.20
4.15	Correlation btw GMS CTT and Observed Rainfall for St. 48618	4.21
4.16	Correlation btw GMS CTT and Observed Rainfall for St. 48657	4.21
4.17	Average Rainfall Area Using Theissen's Polygon	4.24
4.18	Rainfall-Runoff and Accumulated Discharge (Calibration for Kajang Catchment Based on Observed Rainfall)	4.27
4.19	Rainfall-Runoff and Accumulated Discharge (Calibration for Kajang Based on QPF Rainfall)	4.27

4.20	Comparison of Runoffs from Observed and QPF Estimated Rainfall for Kajang Catchment	4.29
4.21	Runoff based on only Observed Rainfall for Sub-catchemnts and Basin	4.29
4.22	Integrated Langat Network Model	4.31
4.23	Horizontal Plan of the River Model Showing the Simulation Point	4.31
4.24	Pre-flood Water Level at the Cross Section of the Simulation Point	4.32
4.25	Peak-flood Water Level at the Cross Section of the Simulation Point	4.32
4.26	Horizontal Plan of the Selected Kajang Branch	4.33
4.27	Longitudinal Profile Plot of Kajang Branch	4.34
4.28	Downstream Profile with HGL above River Banks	4.34
4.29	Discharge Rate at the Simulated Flood Point	4.35
4.30	Q-H Graph (Rating curve) at the Simulation Flood Point	4.36
4.31	Flood Level at Simulation Flood Point.	4.36
4.32	DEM and Settlement of the Kajang Township	4.37
4.33	Flood Map Using Runoff Results from Observed Rainfall	4.39
4.34	Flood Map Using Runoff Results from QPF Rainfall Estimates	4.40
4.35	Results of the Overlay Analysis	4.40
4.36	Flood Areas for the Simulation Period	4.41
4.37	Flood Areas in Relation to Settlement	4.42
4.38	Flood Assessment Map	4.43
4.39	Validation of Flood Map Based on Observed Rainfall	4.44
4.40	Validation of Flood Map Based on QPF Rainfall	4.44
4.45	Flood Depth	4.45

LIST OF ABBREVIATIONS

$A_{ m r}$	Rainfall Area
AVHRR	Advance Very High Resolution Radiometer
AV _r	Average Rain-rate
CST	Convective Stratiform Technique
CTR	Cloud Top Reflectance
СТТ	Cloud Top Temperature
DEM	Digital Elevation Model
DID	Drainage and Irrigation Department
DMS	Disaster Management System
DN	Digital Number
DOA	Department of Agriculture
DSS	Decision Support System
DTM	Digital Terrain Model
FAR	False Alarm Ratios
FEMA	Federal Emergency Management Unit
FF	Flood Forecasting
FSU	Florida State University
GCP	Ground Control Points
GEOREX	Geo-spatial Data Exchange System
GFOV	Ground Field of View
GMS	Geostationary Meteorological Satellite
GOES	Geostationary Operational Environmental Satellite
GIS	Geographical Information System

GUI	Graphical User Interface
hr	Hour
HD	Hydrodynamic
HEC	Hydrological Engineering Center
HGL	Hydraulic Grade Line
HIS	Hydrological Information System
HRPT	High Resolution Picture Transmission
IFOV	Instantaneous Field of View
IR	Infrared
ISCCP	International Satellite Cloud Climatology Project
JUPEM	Malaysian Survey Department
К	Kelvin
LAC	Local Area Coverage
MACRES	Malaysian Center for Remote Sensing
MIR	Mid Infrared
mm	millimeter
MOA	Ministry of Agriculture
msl	Mean Sea Level
MSLP	Mean Sea Level Pressure
MSS	Malaysian Meteorological Service
MW	Microwave
NAM	Lumped Conceptual Rainfall-Runoff Model
NEXRAD	Next Generation Radar
NIR	Near Infrared
NOAA	National Oceanic and Atmospheric Administration

NWP	Numerical Weather Prediction
NWS	National Weather Service
PR	Precipitation Radar
QPF	Quantitative Precipitation Forecasting
RM	Malaysian Ringgit
RMSE	Root Mean Square Error
ROF	Runoff Factor
RR	Rainfall Runoff
RS	Remote Sensing
RSO	Rectified Skew Orthomorphic
SAR	Synthetic Aperture Radar
SCS	Soil Conservation Service
Sg.	Sungai (river)
SMI	Soil Moisture Index
SOA	Statistical Objective Analysis
SSARR	Streamflow Synthesis and Reservoir Regulation Model
T _B	Brightness Temperature
ТСР	Tropical Cyclone Program
TIN	Triangulated Irregular Network
TIR	Thermal Infrared
TMI	TRMM Microwave Imager
TOA	Top of Atmosphere
TOPEX	Typhoon Operation Experiment
TRMM	Tropical Rainfall Measuring Mission
UHM	Unit Hydrograph Module

USGS	United States Geological Survey
VIRS	Visible and Infrared Scanner
VIS	Visible
VR _r	Volume Rain-rate
VSRF	Very Short Range Forecasting
WMO	World Meteorological Organization
W/sr m ²	Watts Per Steradian and Square Meter