RESPONSE OF GASTROINTESTINAL TRACT TO Pasteurella multocida SEROTYPE B:2 INFECTION IN BUFFALOES (Bubalus bubalis Linnaeus)

ABUBAKAR SALISU MUHAMMAD
RESPONSE OF GASTROINTESTINAL TRACT TO *Pasteurella multocida* SEROTYPE B:2 INFECTION IN BUFFALOES
(*Bubalus bubalis* Linnaeus)

BY

ABUBAKAR SALISU MUHAMMAD

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirement for the Degree of Doctor of philosophy

November, 2012
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for degree of Doctor of Philosophy

RESPONSE OF GASTROINTESTINAL TRACT TO Pasteurella multocida SEROTYPE B:2 INFECTION IN BUFFALOES (Bubalus bubalis Linnaeus)

By

ABUBAKAR SALISU MUHAMMAD

November, 2012

Chairman: Professor Mohd Zamri-Saad, DVM, PhD
Faculty: Veterinary Medicine

Pasteurella multocida B:2, which causes haemorrhagic septicaemia (HS) of ruminants, is believed to enter the host via the respiratory tract. Among the consequences of the respiratory route of infection are septicaemia, increased permeability of blood vessels and presence of the organism in several organs. However, the respiratory tract may not be the only portal of entry and route of spread of P. multocida B:2. Circumstantial evidence had suggested the involvement of gastrointestinal tract in the pathogenesis of HS in ruminants. Nevertheless, the pathogenesis and pathology of the disease following oral infection has not been well documented since previous reports on the disease were limited to incidental observations. The response of gastrointestinal tract following oral exposure to P. multocida B:2 was studied and compared its severity with intratracheal exposure. The safety,
antibody pattern and mucosal immune response in the gastrointestinal and respiratory tracts following oral or intranasal exposure to \textit{gdhA} (glutamate dehydrogenase) derivative \textit{P. multocida} B:2 in buffalo calves were also investigated.

The clinical signs observed in this study includes; dullness, depression, recumbency, pyrexia, dyspnoea, congested mucous membranes, nasal discharge, lacrimation and salivation following single oral exposure to \textit{P. multocida} B:2, however mean clinical score were significantly higher in intratracheally exposed group, in addition diarrhea was noted in group of calves exposed orally to \textit{P. multocida} B:2 twice, 2 weeks apart. The pathological alterations as the result of oral or intratracheal exposure to \textit{P. multocida} B:2 included generalized lymphadenopathy, acute ulcerative rhinitis, acute fibrinous pneumonia, pleurisy, hydropericardium, hydroperitoneum, haemorrhagic encephalitis, acute enteritis, colitis and necrotizing and haemorrhagic typhilitis and proctitis, however lesions scoring revealed higher scores in gastrointestinal following orally exposure, while respiratory tract showed higher scores in intratracheally exposed group. Following oral or intratracheal exposure, \textit{P. multocida} B:2 was isolated from the intestinal segments of the calves that developed severe clinical HS and they had to be sacrificed at 48 h post-exposure. Similarly, the ultrastructural changes in the infected calves were typical of acute cellular injury, with degeneration of endothelium and vascular walls of the gastrointestinal and respiratory tracts. There were deciliation in the respiratory tract, and microvilli degeneration and disruption in the gastrointestinal tract. Scanning electron microscopy revealed \textit{P. multocida}
B:2 presence on the surfaces of oesophagus, nasal mucosa and trachea of calves in both oral- and intratracheal-exposed group. The lesions were confirmed through the immunoperoxidase technique, to be associated with the inoculated *P. multocida* B:2. The *P. multocida* B:2 antigen was detected not only in the bacterial clusters in the gastric pits, intestinal epithelia and capillaries, Brunner’s glands and crypt of Lieberkühn but also seen to interact with infiltrating neutrophils, macrophages and erythrocytes in congested vessels and in haemorrhages.

Concurrently the mucosal-associated lymphoid tissue (MALT) response in the gastrointestinal and respiratory tracts of buffalo calves following oral exposure to live wild-type *P. multocida* B:2 was also evaluated. In calves exposed to both oral and intranasal *P. multocida* B:2, lymphoid nodules with increased sized and lymphocyte number were detected. With the confirmation of bronchus-associated lymphoid tissue (BALT) and gut-associated lymphoid tissue (GALT) involvement in *P. multocida* B:2 infection, an experiment was conducted to evaluate the safety, antibody pattern, and responses of BALT and GALT to exposure to *gdhA* derivative *P. multocida* B:2. Large dose oral and intranasal *gdhA* derivative *P. multocida* B:2 exposures elicited sustained and significantly higher serum IgG and IgA responses. Similarly, the IgG and IgA levels in bronchioaveolar fluid and intestinal washings were higher and the BALT and GALT responses were significant.

This study showed that *P. multocida* B:2 were present in various segments and tissues of the gastrointestinal tract following oral or intratracheal
exposure. Therefore, it can be concluded that *P. multocida* B:2 infection can be transmitted via the gastrointestinal tract. Both oral and intranasal routes of administration of *gdhA* derivative *Pasteurella multocida* B:2 elicited high serum antibody response although mucosal IgA and IgG responses were variable. Thus, oral and intranasal infections with large doses of live attenuated *P. multocida* B:2 were safer than with wild-type *P. multocida* B:2. Both of these routes can be considered as potential alternative route for vaccine administration against HS in buffalo calves.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan ijazah Doktor Falsafah Veterinar

GERAK BALAS SALUR GASTROUSUS TERHADAP JANGKITAN Pasteruella multocida SEROTYPE B:2 PADA KERBAU (Bubalus bubalis Linnaeus)

Oleh

ABUBAKAR SALISU MUHAMMAD

November, 2012

Pengerusi: Professor Mohd Zamri-Saad, DVM, PhD
Fakulti: Perubatan Veterinar

pendedahan intratrakea. Keselamatan, pola antibodi dan gerak balas dalam salur gasrousus dan pernafasan berikut pendedahan oral dan intranasum kepada gdhA (glutamate dehydrogenase) terbitan P. multocida B:2 dalam anak kerbau juga diselidik.

yang diinokulat. Antigen *P. multocida* B:2 dikesan bukan sahaja pada gugusan bakteria dalam pit gaster, epitelium dan rerambut usus, kelenjar Brünner dan kripta Lieberkühn tetapi juga dapat dilihat bertindak balas dengan neutrofil, makrofaj dan eritrosit yang menyusup ke dalam salur tersesak.
ACKNOWLEDGEMENTS

All praises are due to ALLAH, lord of the world for the abundant privileges too numerous to mention and the strength to undergo a training of the mind (Ph.D program).

I wish to sincerely acknowledge the advisory and supervisory guidance of the chair of my committee, Prof. Dr. Mohd Zamri-Saad for his unique style and good research direction, and to Prof. Dr. Jasni Sabri and Prof. Dr. Md Zuki Abu Bakar @ Zakaria for their understanding and constructive criticism right from the conception, through execution to completion of the research. You all remain accessible at all times in the course of my studies; I will forever remain indebted to you.

I would use this opportunity to acknowledge the technical assistance of the following people; who assisted in animal handling and post-mortem, Mr. Ariff Ahmad, Mr. Noraziman Sulaiman, Dr. Shahirudin Shamsudin, Mr. Ghazali Md Yusoff, Mr. Mohd Najib Yahya, Mr. Apparau Somanaidu; In histopathology, Puan (Mrs) Jamilah Jahari, Puan (Mrs) Latifah Mohd Hanan, En. (Mr.) Mohd Jamil Samad; In electron microscopy, many staff of the microscopy unit at the Institute of Bioscience, particularly Puan (Mrs) Irmazian Abd Shukor, Mrs. Aminah Jusoh, Mrs. Farrah Deba Jamiauddin, Mrs. Faridah Akmal Ismail, Mr. Rafiuz Zaman Haroun, Mr Abdu Shukor of the Veterinary Research Institute, Ipoh, Perak and Prof. Dr. Rasedee Abdullah for technical assistance with abstract translation to Malay.
The support and advice of my past and present laboratory mates were very useful throughout the journey (Post-docs. Dr. Hani, Dr. Benjamin, and Drs Didik, Shahrom, Sriyanto, Aan, Amal, Rafidah, Annas, Adza and Shaqinah; and Firdaus, Atya, Wawa, Wani). Discussions with other students and faculty members help in improving the outcome of the project and thesis. Drs Faruk Bande, Muhtar Anka, Ibrahim Anka had at various times assisted in animals restraints, blood sampling and/or offering useful advice occasionally which in turn improve the outcome of work.

To my parents from whom, I learnt hard work and being independent. They have continued to support my course with untiring love. With you around, I feel stable emotionally, psychologically and financially throughout the journey. To my siblings for the consistent calls and concern all through, you all continue to inspired me and keep my spirit high all along my Ph.D Journey.

To my wife for unparallel sacrifice shown for abandoning her medical practice in Nigeria to make sure we raise our two most cherish divine gifts together (Maryam and Hafsat). This concern and many more commitments showed, re-kindled and boost my spirit and determination to succeed.

Lastly, I will especially once more express my profound gratitude to Prof. Dr. Mohd Zamri-Saad (My Supervisory committee Chair) for the offer of Special Graduate Research Allowance and funding the entire Ph.D project.
This is my Journey and the people behind the scene, Thank you all ALHAMDULILLAH.
I certify that a Thesis Examination Committee has met on 21st November, 2012 to conduct the final examination of Abubakar Salisu Muhammad on his thesis entitle “Response of Gastrointestinal tract to Pasteurella multocida Serotype B:2 infection in Buffaloes (Bubalus bubalis Linnaeus)” in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

Abdul Rahman bin Omar, PhD
Professor
Institute of Bioscience
Universiti Putra Malaysia
(Chairman)

Mohd Hair bin Bejo, PhD
Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Internal Examiner)

Md Sabri bin Mohd Yusoff, PhD
Senior Lecturer
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Internal Examiner)

Patricia E. Shewen, PhD
Professor
Department of Pathobiology
University of Guelph, Canada
(External Examiner)

SEOW HENG FONG, PhD
Professor and Deputy Dean
School of Graduates Studies
Universiti Putra Malaysia

Date:
This thesis was submitted to the Senate of the Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The Members of the Supervisory Committee are as follows:

Mohd Zamri-Saad, PhD
Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Chairman)

Jasni Sabri, PhD
Associate Professor
Faculty of Veterinary Medicine
Universiti Malaysia Kelantan
(Member)

Md Zuki Abu Bakar @ Zakaria, PhD
Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

I declare that the thesis is based on my original work except for quotations and citations, which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at Universiti Putra Malaysia or other institution.

__
ABUBAKAR SALISU MUHAMMAD
Date: 21 November 2012
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1</td>
<td>Research hypotheses</td>
<td>4</td>
</tr>
<tr>
<td>1.2</td>
<td>Objectives of the study</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>LITERATURE REVIEW</td>
<td>6</td>
</tr>
<tr>
<td>2.1</td>
<td>Pasteurella multocida</td>
<td>6</td>
</tr>
<tr>
<td>2.1.1</td>
<td>Pasteurella multocida infections</td>
<td>7</td>
</tr>
<tr>
<td>2.1.2</td>
<td>Serology and identification of Pasteurella multocida</td>
<td>8</td>
</tr>
<tr>
<td>2.1.3</td>
<td>Composition of Pasteurella multocida capsule</td>
<td>9</td>
</tr>
<tr>
<td>2.1.4</td>
<td>Adhesins and their role in pathogenesis</td>
<td>10</td>
</tr>
<tr>
<td>2.1.5</td>
<td>Membrane-associated enzymes and pathogenic mechanism of Pasteurella multocida</td>
<td>11</td>
</tr>
<tr>
<td>2.2</td>
<td>Haemorrhagic septicaemia</td>
<td>14</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Aetiology of haemorrhagic septicaemia</td>
<td>14</td>
</tr>
<tr>
<td>2.2.2</td>
<td>Species susceptibility to haemorrhagic septicaemia</td>
<td>14</td>
</tr>
<tr>
<td>2.2.3</td>
<td>Factors influencing the transmission and clinical presentation</td>
<td>16</td>
</tr>
<tr>
<td>2.2.4</td>
<td>Occurrence and role of carrier animals in haemorrhagic septicaemia</td>
<td>17</td>
</tr>
<tr>
<td>2.2.5</td>
<td>Pathology of haemorrhagic septicaemia</td>
<td>18</td>
</tr>
<tr>
<td>2.3</td>
<td>Mucosal immune system in animals</td>
<td>21</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Development of mucosal immunity in animals</td>
<td>21</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Conjunctiva-associated lymphoid tissue (CALT)</td>
<td>24</td>
</tr>
<tr>
<td>2.3.3</td>
<td>Nasal-associated lymphoid tissue (NALT)</td>
<td>24</td>
</tr>
<tr>
<td>2.3.4</td>
<td>Larynx-associated lymphoid tissue (LTALT)</td>
<td>25</td>
</tr>
<tr>
<td>2.3.5</td>
<td>Bronchus-associated lymphoid tissue (BALT)</td>
<td>26</td>
</tr>
<tr>
<td>2.3.6</td>
<td>Gut-associated lymphoid tissues (GALT)</td>
<td>27</td>
</tr>
</tbody>
</table>
2.4 Dynamics of mucosal immunity

2.4.1 The role of M-cell in mucosal immune response
2.4.2 Lymphocyte responses and regulation
2.4.3 Migration of mucosal lymphocytes

2.5 Haemorrhagic septicaemia vaccines and vaccination

2.6 Benefits and limitations of mucosal immunization in disease control

3 CLINICO-PATHOLOGICAL CHANGES IN BUFFALO CALVES FOLLOWING ORAL EXPOSURE TO Pasteurella multocida B:2

3.1 Introduction

3.2 Materials and Methods

3.2.1 Animals
3.2.2 Inocula preparation
3.2.3 Experimental procedure
3.2.4 Post-mortem examination
3.2.5 Bacterial isolation
3.2.6 Statistical analysis

3.3 Results

3.3.1 Clinical observations
3.3.2 Gross and histopathology
3.3.3 Bacterial isolation

3.4 Discussion

4 ULTRASTRUCTURAL CHANGES AND BACTERIAL LOCALIZATION IN BUFFALO CALVES FOLLOWING ORAL EXPOSURE TO Pasteurella multocida B:2

4.1 Introduction

4.2 Materials and Methods

4.2.1 Animals
4.2.2 Inocula preparation
4.2.3 Experimental design
4.2.4 Bacteriological examination
4.2.5 Immunohistochemistry (IHC) for P. multocida B:2
4.2.6 Electron microscopic examination

4.3 Results

4.3.1 Clinical observations
4.3.2 Bacterial isolation
4.3.3 Immunohistochemical detection of *Pasteurella multocida* B:2

4.3.4 Ultrastructural observations

4.4 Discussion

5 IMMUNOPEROXIDASE FOR EVALUATIONS OF LESIONS IN THE GASTROINTESTINAL TRACT OF BUFFALO CALVES ORALLY EXPOSED TO *Pasteurella multocida* B:2

5.1 Introduction

5.2 Materials and Methods
5.2.1 Animals
5.2.2 Inocula preparation
5.2.3 Experimental procedure
5.2.4 Bacterial isolation
5.2.5 Post-mortem and immunoperoxidase examination
5.2.6 Statistical analysis

5.3 Results
5.3.1 Clinical Observations
5.3.2 Bacterial Isolation
5.3.3 Pathology and immuno-detection

5.4 Discussion

6 THE RESPONSES BY GUT-ASSOCIATED AND BRONCHUS-ASSOCIATED LYMPHOID TISSUES OF BUFFALO CALVES FOLLOWING ORAL EXPOSURE TO *Pasteurella multocida* B: 2

6.1 Introduction

6.2 Materials and Methods
6.2.1 Animals
6.2.2 Inoculum preparation
6.2.3 Experimental procedure
6.2.4 Tissue examination
6.2.5 Statistical analysis

6.3 Results
6.3.1 Bronchus-associated lymphoid tissue
6.3.2 Gut-associated lymphoid tissue

6.4 Discussion
SAFETY, ANTIBODY PATTERN AND RESPONSES BY BRONCHUS-ASSOCIATED AND GUT-ASSOCIATED LYMPHOID TISSUES OF BUFFALO CALVES FOLLOWING ORAL ADMINISTRATION OF LIVE ATTENUATED Pasteurella multocida B:2

7 Introduction

7.1 Introduction

7.2 Materials and Methods

7.2.1 Animals
7.2.2 Inocula preparation
7.2.3 Experimental design
7.2.4 Clinical observations
7.2.5 Bacterial examination
7.2.6 Serological examination
7.2.7 Post-mortem examination
7.2.8 Tissue examination
7.2.9 Statistical analysis

7.3 Results

7.3.1 Clinical observations
7.3.2 Serological response
7.3.3 Bronchus-associated and gut-associated lymphoid tissues responses

7.4 Discussion

8 GENERAL DISCUSSION, CONCLUSIONS AND SUGGESTIONS FOR FUTURE RESEARCH

REFERENCES
APPENDICES
BIODATA OF STUDENT
LIST OF PUBLICATIONS