MORPHOLOGY AND MUCOSAL IMMUNITY OF THE OVIDUCT AND UTERUS DURING FOLLICULAR AND LUTEAL PHASES IN EWES

INTAN SHAMEHA BINTI ABDUL RAZAK

FPV 2009 19
MORPHOLOGY AND MUCOSAL IMMUNITY OF THE OVIDUCT AND UTERUS DURING FOLLICULAR AND LUTEAL PHASES IN EWES

By

INTAN SHAMEHA BINTI ABDUL RAZAK

Thesis submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

October 2009
I wish to dedicate this thesis to my inspired late Father, Abdul Razak bin Abdul Mutalib. Who always wanted me to, and now your wishes come true. And to my precious children, Aidiel Ikmal, Ariff Iskandar, Annuralisa Izmira & Azzalea Irdina. May this masterpiece be your inspiration for your future endeavors...
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy

MORPHOLOGY AND MUCOSAL IMMUNITY OF THE OVIDUCT AND UTERUS DURING FOLLICULAR AND LUTEAL PHASES IN EWES

By

INTAN SHAMEHA BINTI ABDUL RAZAK

October 2009

Chairman: Md Zuki Abu Bakar @ Zakaria, PhD

Faculty: Veterinary Medicine

Reproductive diseases result in major production losses in the sheep industry. Although extensive studies on mucosal surfaces of the female reproductive tract had been conducted, very little information particularly the mechanism is known. Furthermore, defining the mucosal immunity is complicated by the critical interface between the endocrine and immune systems. Thus, an approach to gain sight into the pathogenesis of the reproductive diseases by investigating the local uterine cellular immune response under the precise hormonal influences throughout the estrous cycle was undertaken.
Fourteen ewes were synchronized into estrus and the plasma samples were collected every alternate day for hormonal profiles using radioimmunoassay (RIA) techniques. The ewes were divided into two groups: follicular and luteal phases groups (n=7). All the ewes were observed for three consecutive cycles before they were slaughtered at the peak of the follicular and luteal phases. The ewes started to exhibit signs of estrus between 24 to 36 hours following the intravaginal sponges’ removal. The average estradiol level during the peak of the follicular phase was 5.44 pg/ml for the first cycle, 4.85 pg/ml for the second and 4.25 pg/ml for the third cycle. The ewes started the luteal phase which peaked at day 9 with the average progesterone value of 4.21 ng/ml and 4.65 ng/ml respectively. The estrus period occurred for 30.6 ± 0.65 hours, luteal phase period ranged between 12 to 14 days, making the complete cycle of 15 days. Average vaginal mucous resistances in ewes were recorded for three consecutive cycles using Draminski® estrous detector. The daily plasma concentrations of estradiol and progesterone were significantly correlated (p<0.01) with the estrus detector reading at (r = -0.924) and (r = 0.705), respectively.

At slaughter, samples from the anterior, middle and posterior horns and the oviducts were taken and processed accordingly for light and electron microscopy. Under light microscopy, the number of lymphocytes in
different parts of the uterus was significantly (p<0.05) higher during the follicular phase compared to the luteal phase. However, in the follicular phase group, the number of lymphocytes was not significantly different between the middle and anterior horn, while in the luteal phase group, the number of lymphocytes was not significantly different between the posterior and middle horn. Similarly, the quantity of plasma cell revealed that the number was significantly (p<0.05) higher in the follicular phase compared to the luteal phase for the different parts of the reproductive tract. However, in the luteal phase group, the number of plasma cells was not significantly different between the posterior and middle horn and between the anterior horn and oviduct.

Ampullae were taken and processed accordingly for scanning (SEM) and transmission electron microscopy (TEM). During the follicular phase, the population of secretory cells was less than the luteal phase, while the number of ciliated cells was higher than the luteal phase. The secretory cells were rounded, turgid with intact microvilli in the follicular phase, but in the luteal phase the surfaces were broken and some secretions were oozing out. The TEM examination revealed that during the follicular phase, the secretory cells had blunt processes at the apex with intact microvilli, but during the luteal phase, the cytoplasmic protrusion on the secretory cells
exhibited an increase in volume. Numerous secretory granules with different sizes and electron density were found in both phases. During the follicular phase, the secretory cells were at the preparatory stage while they were actively secreting during luteal phase. The present study revealed marked cyclic changes and differences of the secretory cells during these two phases of the estrous cycle. Results of current study also suggested that the secretory granules were released by exocytosis and the apocrine would be the mode of secretion at estrus while the merocrine is the mode of secretion at luteal phase.

In vitro experiments were conducted on the adhesion and colonization of *E. coli* to the uterus explants of both the follicular and luteal phases ewes. Scanning electron microscopy showed there were significant (p<0.05) differences between the groups at all different post-inoculation times except for the negative control group and between 180 and 360 minutes post-inoculation for both groups. Hence, the adhesion of *E. coli* to uterus during follicular phase was significantly (p<0.05) lower than the luteal phase. It seems that the intensity of adhesions increases with time.

This present study contributes to the new knowledge on the endocrinology of Malin crossbred ewes where complete estradiol and progesterone
hormonal profiles were obtained for the first time. In addition, the vaginal mucous resistance data recorded using the Draminski® estrous detector might be useful as the guideline in determining the exact timing of the estrus phase during the estrous cycle.

Present results demonstrated that the mucosal immunity is lower during peak luteal phase than follicular phase in the ewes since the number of lymphocytes and plasma cells were higher during peak follicular phase. The morphological evaluations confirmed that during follicular phase, the uterus and the oviduct are at the preparatory stage for the fertilization process while during luteal phase, the cellular immune response is modified to minimize rejection in the case if the ewe conceived. The in vitro challenged of the uterine explants confirmed the severity of the bacterial colonization during luteal phase than the follicular phase.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

MORFOLOGI DAN KEIMUNAN MUKOSA OVIDUKTUS DAN UTERUS SEMASA FASA FOLIKEL DAN LUTEUM PADA BIRI-BIRI

Oleh

INTAN SHAMEHA BINTI ABDUL RAZAK

Oktober 2009

Pengerusi: Md Zuki Abu Bakar @ Zakaria, PhD

Fakulti: Perubatan Veterinar

Empat belas bebiri kacukan Malin telah diselaraskan masa estrusnya supaya berlaku secara serentak, dan sampel plasma telah diambil selang sehari
untuk mendapatkan profil hormon menggunakan teknik radioimmunoassai (RIA). Bebiri ini dibahagikan kepada dua kumpulan: kumpulan fasa folikel dan luteum (n=7). Kesemua bebiri ini diperhatikan untuk tiga kitaran estrus berturut-turut sebelum mereka disembelih samada pada waktu puncak fasa folikel atau luteum. Bebiri ini mula menunjukkan ciri-ciri biang di antara 24 hingga 36 jam selepas span intravagina dicabut. Purata paras estradiol semasa waktu puncak fasa folikel ialah 5.44 pg/ml untuk kitaran pertama, 4.85 pg/ml untuk kitaran kedua dan 4.25 pg/ml bagi kitaran ketiga. Bebiri ini mula berada pada fasa luteum yang memuncak pada hari ke-9 dengan purata paras progesteron 4.21 ng/ml, 4.65ng/ml dan 4.2ng/ml untuk kitaran pertama, kedua dan ketiga. Tempoh masa estrus berlaku selama 30.6 ± 0.65 jam, dan jangkamasa fasa luteum ialah antara 12 hingga 14 hari, menjadikan satu kitaran estrus lengkap ialah selama 15 hari. Purata bacaan rintangan mukus pada vagina telah direkodkan bagi tiga kitaran berturut-turut menggunakan pengesan estrus Draminski®. Kandungan estradiol dan progesteron dalam plasma harian di dapat berkorelasi secara signifikan (r=-0.924) dan (r=0.705) pada (P=0.01) dengan bacaan pengesan estrus Draminski®.

Selepas disembelih, sampel dari bahagian anterior, tengah dan posterior tanduk rahim serta oviduktus diambil dan diproses sewajarnya (mengikut
prosedur) untuk mikroskop cahaya dan elektron. Di bawah mikroskop cahaya, bilangan limfosit pada bahagian uterus berbeza semasa fasa folikel adalah lebih tinggi secara signifikan \((p<0.05)\) berbanding semasa fasa luteum. Walaubagaimanapun, di dalam kumpulan fasa folikel, bilangan limfosit didapati tidak berbeza secara signifikan \((p>0.05)\) di antara tanduk tengah dan anterior, dan di dalam kumpulan luteal, bilangan limfosit didapati tidak berbeza secara signifikan di antara tanduk posterior dan tengah. Begitu juga dengan kuantiti sel plasma, di mana didapati bilangannya adalah tinggi secara signifikan \((p<0.05)\) semasa fasa folikel berbanding dengan fasa luteum pada bahagian-bahagian yang berbeza di dalam saluran pembiakan. Walaubagaimanapun, di dalam kumpulan fasa luteum, bilangan sel plasma tidak berbeza dengan signifikan di antara tanduk posterior dan tanduk tengah serta antara tanduk anterior dan oviduktus.

Ampula telah diambil dan diproses sewajarnya untuk mikroskop elektron imbasan dan transmisi. Semasa fasa folikel, populasi sel rembesan adalah berkurangan berbanding dengan semasa fasa luteum, sementara bilangan sel silia didapati lebih banyak semasa fasa luteum. Semasa fasa folikel, sel rembesan didapati berbentuk bulat, membengkak dan mempunyai mikrovili pada permukaannya, tetapi pada fasa luteum, permukaan sel ini

Eksperimen in vitro pelekatan dan pengkolonian E. coli terhadap eksplan mukosa uterus fasa folikel dan luteum telah dijalankan. Pemeriksaan mikroskop elektron imbasan menunjukkan terdapat perbezaan yang signifikan (p<0.05) di antara semua kumpulan dan tempoh pascaeraman kecuali pada kawalan negatif, dan antara 180 dan 360 minit pascaeraman bagi kedua kumpulan. Pelekatan E. coli juga didapati lebih rendah secara signifikan (p<0.05) semasa fasa folikel berbanding fasa luteum. Ini menunjukkan keamatan perlekatan bertambah dengan masa.
Hasil penemuan ini telah menyumbang kepada maklumat baru dalam bidang endokrinologi bebiri baka kacukan Malin di mana profil hormon estradiol dan progesteron yang lengkap telah dapat direkodkan buat pertama kalinya. Maklumat ini dilengkapikan dengan data bacaan rintangan mukus vagina yang direkod menggunakan alat pengesan estrus Draminski® di mana ianya dapat dimanfaatkan sebagai panduan semasa menentukan fasa estrus semasa kitaran estrus.

Hasil kajian ini juga telah membuktikan tahap keimunan mukosa semasa waktu puncak fasa luteum adalah lebih rendah berbanding fasa folikel memandangkan bilangan limfosit dan sel plasma yang lebih tinggi semasa waktu puncak fasa folikel. Penilaian morfologi telah dapat mengesahkan semasa fasa folikel, rahim dan oviduktus berada dalam keadaan bersedia untuk proses persenyawaan tetapi semasa fasa luteum, tindakbalas keimunan sel diubahsuai bagi meminimumkan penolakan sekiranya kehamilan berlaku. Cabaran in vitro telah membuktikan pengkolonian bakteria yang lebih teruk semasa fasa luteum berbanding fasa folikel.
ACKNOWLEDGEMENTS

In the Name of Allah, the Most Benevolent and Most Merciful……
Alhamdulillah, I would like to express my utmost thanks and gratitude to
Almighty Allah S.W.T. who has given me the capability and strength to
complete this thesis and my ‘selawat’ and ‘salam’ to His righteous, Prophet
Muhammad (peace be upon him).

It is a pleasure to express my gratitude wholeheartedly to my supervisor,
Assoc. Prof. Dr. Md Zuki Abu Bakar, who has devoted much of his time for
invaluable guidance, advice, supervision and support throughout the course
of this study. Sincere thanks are also due to my co-supervisors, Assoc. Prof.
Dr Abd. Wahid Haron, Assoc. Prof. Dr. Noordin Mohamed Mustapha and
Prof. Dr. Tengku Azmi Tengku Ibrahim who have provided advices and
helpful discussion that have enlightened and improved this study.

I wish to express my sincere gratitude to the former Dean of Faculty of
Veterinary Medicine, UPM, Prof. Dr Mohd Zamri Saad who was
instrumental in providing me the opportunity to pursue the candidature,
and Universiti Putra Malaysia and Ministry of Higher Education for
granting me the study leave and scholarships during my study.

I am deeply indebted to Puan Maizatulakmal Moktar, Mr. Raziman
Sulaiman and Mr. Ariff Ahmad who were most helpful and had contributed
their efforts in making this study a success. Special thanks to Dr. Goh Yong
Meng for his help in statistical analysis.
I have also been very fortunate in receiving assistance from a number of my colleagues and friends particularly, Mr. Yap Keng Chee, Mr. Saipuzaman Ali, Mr. Mohd Kamarudin Awang Isa, Mr Hajara’ih Salamat, Dr. Anjas Asmara Samsudin, Mr. Abd. Rashid Abd. Rahman, Mrs. Sapiah Jalal, Miss Kunnasunthary Ramachandran and other staffs of Histopathology, Virology and Bacteriology laboratories, FVM, UPM.

I also benefitted from kind outstanding works of Prof. Dr. Fauziah Othman, Mr. Ho Oi Kuan, Miss Azilah Abd Jalil, Mr Rafiuz Zaman Haroun, Mrs Noraini Mohd Ain, Mrs Faridah Akmal Ismail, Mrs Noor Hayati Jamaludin, and the staff members of the Electron Microscope Unit, Institute of Biosciences, UPM.

My greatest appreciation to my beloved husband Abu Hassan, my wonderful children, Aidiel Ikmal, Ariff Iskandar, Annuralisa Izmira and Azzalea Irdina whom I owe the most for their patience, understanding and support through this long and demanding project. To my mother, Puan Ramlah Abu Kassim and mother-in-law, Puan Fadzilah Ibrahim, words fail me to express my appreciation of your sacrifices, patience, understanding and supports.

Last but not least, continuous moral support and encouragement from my brothers, Zulkefli and Amir Izwan, and friends Noraniza, Mazlina, Awang Rozaini, Hasliza, Nurul, Po Po, Lat lat, Hafandi, Mokrish, and many others that I could not mention here are deeply appreciated.
APPROVAL SHEET

I certify that an Examination Committee has met on 14th October 2009 to conduct the final examination of Intan Shameha Abdul Razak on her Doctor of Philosophy thesis entitled “Morphology and Mucosal Immunity of the Oviduct and Uterus during Follicular and Luteal Phases in Ewes” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Examination Committee were as follows:

Mohamed Ariff bin Omar, PhD
Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Chairman)

Mohamed Ali bin Rajion, PhD
Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Internal Examiner)

Abdul Azhar Kassim, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Internal Examiner)

Arief Boerdiono, PhD
Professor
Faculty of Veterinary Medicine
Bogor Agricultural University
Indonesia
(External Examiner)

BUJANG KIM HUAT, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Md Zuki Abu Bakar@Zakaria, PhD
Associate Professor,
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Chairman)

Abdul Wahid Haron, PhD
Associate Professor,
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Member)

Noordin Mohamed Mustapha, PhD
Associate Professor,
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Member)

Tengku Azmi Tengku Ibrahim, PhD
Professor,
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Member)

HASANAH MOHD GHAZALI, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 11 February 2010
DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institution.

INTAN SHAMEHA ABDUL RAZAK

Date: 25 November 2009
TABLE OF CONTENTS

DEDICATION ii
ABSTRACT vii
ABSTRAK viii
ACKNOWLEDGEMENTS xii
APPROVAL xiv
DECLARATION xvi
LIST OF TABLES xxii
LIST OF FIGURES xxiii
LIST OF PLATES xxiv
LIST OF ABBREVIATIONS xxix

CHAPTER

1 INTRODUCTION 1

2 LITERATURE REVIEW 6

Reproductive Cycles and Influences
Reproductive cycle 6
Endocrine Regulation of Estrous Cycle 7
Follicular Dynamics 9
Folliculogenesis 13
Follicular growth 13
The early stage of follicular development 14
Antral follicular waves in ewe 15
Endocrinology of follicular growth and development 18
Steroidogenesis 18
Follicular growth and development during follicular and luteal phase 20
Ovulation in the ewe 21
Corpus luteum formation and development 24
Immunology of Reproduction 26
Innate Immune System 27
Acquired Immune System 28
Regulation of Cellular Immune Function in the Reproductive Tract 29

Steroid Hormone Regulation

xvii
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estrogen-influence</td>
<td>33</td>
</tr>
<tr>
<td>Progesterone-Influence</td>
<td>36</td>
</tr>
<tr>
<td>Components of the Reproductive Tract Immune System</td>
<td>38</td>
</tr>
<tr>
<td>Phagocytosis</td>
<td>38</td>
</tr>
<tr>
<td>Macrophages</td>
<td>39</td>
</tr>
<tr>
<td>PMN Cells</td>
<td>39</td>
</tr>
<tr>
<td>Lymphocytes</td>
<td>40</td>
</tr>
<tr>
<td>T-Lymphocytes</td>
<td>42</td>
</tr>
<tr>
<td>B- Lymphocytes</td>
<td>43</td>
</tr>
<tr>
<td>Plasma Cells</td>
<td>43</td>
</tr>
<tr>
<td>Anatomic Considerations</td>
<td>44</td>
</tr>
<tr>
<td>Other Components</td>
<td>47</td>
</tr>
<tr>
<td>Ciliated Cells</td>
<td>48</td>
</tr>
<tr>
<td>Secretory Cells</td>
<td>48</td>
</tr>
</tbody>
</table>

3 GENERAL MATERIALS AND METHODS

Animals | 50 |
Estrous Synchronization | 50 |
Determination of estradiol and progesterone hormone profiles | 51 |
Sample Collection and Processing for Light Microscopic Examination | 56 |
Sample Collection and Processing for Scanning Electron Microscope (SEM)| 57 |
Sample Collection and Processing for Transmission Electron Microscope (TEM)| 57 |
Statistical Analysis | 58 |

4 DETERMINATION OF PEAK FOLLICULAR AND LUTEAL PHASES IN EWES BY DETERMINING PROGESTERONE AND ESTRADIOL LEVELS BY USING RIA TECHNIQUE

Introduction | 59 |
Materials and Methods | 62 |
Animals | 62 |
Blood Samples Collection | 62 |
Radioimmunoassay Technique (RIA) | 62 |
Detection of Estrus | 63 |
Statistical Analysis | 66 |
Results | 66 |
 Plasma concentrations of estradiol and
progesterone
Mean estrous cycle length
Mean estrus period
Signs of estrus
Confirmation of estrus
Vaginal mucous resistance
Discussion
Conclusion

5 QUANTIFICATION OF THE LYMPHOCYTES AND PLASMA CELL POPULATION IN THE OVIDUCT AND UTERINE MUCOSAE DURING FOLLICULAR AND LUTEAL PHASES

Introduction
Materials and Methods
Animals
Experimental Procedures
Sample Collection and Processing for Light microscopic Examination
Haematoxylin and Eosin Staining
Morphometry evaluation
Statistical Analysis
Results
Histological examination of the distribution of lymphocytes
Distributions of lymphocytes in the uterus and oviduct
Histological examination of the distribution of plasma cells
Distributions of plasma cells in the uterus and Oviduct
Discussion
Conclusion

6 HISTOLOGICAL AND ULTRASTRUCTURAL EVALUATIONS OF THE UTERINE AND OVIDUCTAL MUCOSAE DURING FOLLICULAR AND LUTEAL PHASES

Introduction
Materials and Methods
Animals
Experimental Procedures

xix
Conclusion 174

8 GENERAL DISCUSSION 176

9 SUMMARY, GENERAL CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH 193

BIBLIOGRAPHY 197
APPENDICES 221
BIODATA OF STUDENT 239
LIST OF PUBLICATIONS 241