VISION-BASED HUMAN ACTION RECOGNITION USING TIME DELAY INPUT RADIAL BASIS FUNCTION NETWORKS

DAVOOD KALHOR

FK 2011 155
VISION-BASED HUMAN ACTION RECOGNITION USING TIME DELAY INPUT RADIAL BASIS FUNCTION NETWORKS

DAVOOD KALHOR

MASTER OF SCIENCE
UNIVERSITI PUTRA MALAYSIA

2011
VISION-BASED HUMAN ACTION RECOGNITION USING
TIME DELAY INPUT RADIAL BASIS FUNCTION NETWORKS

By

DAVOOD KALHOR

Thesis submitted to the School of Graduate Studies, Universiti Putra Malaysia,
in Fulfillment of the Requirement for the Degree of Master of Science

December 2011
DEDICATION

This thesis is dedicated to my beloved wife, Trifa, for all her support and patience during my research, and also to our darling daughter Viana.
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the degree of Master of Science

VISION-BASED HUMAN ACTION RECOGNITION USING TIME DELAY INPUT RADIAL BASIS FUNCTION NETWORKS

By

DAVOOD KALHOR

December 2011

Chairman: Professor Ishak Aris, PhD

Faculty: Engineering

Understanding human actions from video sequences is one of the most active and challenging research topics in computer vision. In spite of several promising works, particularly in recent years, to achieve high accuracy, there is still a lack of efficient systems for real-time applications, thereby increasing demand for faster systems. In other words, when addressing high performance systems for real-time applications both accuracy and speed should be considered. In practice, however, concurrently achieving high accuracy and high speed is very challenging. This thesis is motivated to deal with this problem and proposes a method, which is sufficiently fast for real-time human action recognition at 10 frames per second (fps).

The proposed method consists of two main parts. In the first part, a feature vector is extracted for each frame, and then an action descriptor is constructed from a concatenation of these vectors. The choice of appropriate features is of vital importance to successful design of a high-performance system. This thesis, unlike
most of the previous works in which very complex and high dimensional feature vectors have been used to describe actions, proposes a new descriptor with low dimensionality and complexity while preserving required power of discrimination. The feature vector is built by merging three information channels from grid-based shape features, bounding box, and the mass center of silhouettes. In the second part, these feature vectors are classified utilizing a Time Delay Input Radial Basis Function Network (TDIRBFN). This network has no integration layer and therefore a smaller number of model parameters and less computation during model selection. A growing-cell approach is suggested to train this network.

This work is evaluated using leave-one-actor-out protocol and a human action dataset (provided by University of Illinois at Urbana-Champaign) containing 14 actions. Based on experimental results, implemented in MATLAB environment, the average execution time for constructing feature vectors is almost 20 ms (50 fps), significantly smaller than the literature. The proposed method can be trained to meet two different objectives, high speed (the main requirement of real-time systems) and high accuracy (the main requirement of non-real-time systems). The achieved results are 15.5 fps (classifier speed) and 90.66% (accuracy), for the first objective, and 94.52% (accuracy) and 2.37 fps (classifier speed), for the second objective. A comparative analysis demonstrates that the proposed system, in addition to comparable accuracy with the literature, outperforms state-of-the-art methods in terms of both speed and overall performance. The findings of this work are significant in that they offer simpler descriptors as well as the TDIRBFN as an alternative method for classification of human actions, particularly for real-time applications.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

PENGECAMAN AKSI MANUSIA BERASASKAN PENGLIHATAN MENGGUNAKAN RANGKAIAN MASUKAN MASA LENGAH FUNGSI BERASASKAN JEJARIAN

Oleh

DAVOOD KALHOR

Disember 2011

Pengerusi: Profesor Ishak Aris, PhD
Fakulti: Kejuruteraan

Memahami aksi-aksi manusia dari turutan video adalah salah satu topik yang aktif dan mencabar di dalam bidang penglihatan komputer. Di samping beberapa hasil kerja yang terdahulu yang menunjukkan ketepatan yang tinggi, masih terdapat sistem yang kurang cekap terutama bagi aplikasi masa sebenar, ini menyebabkan permintaan yang meningkat kepada sistem yang lebih pantas. Dengan perkataan yang lain, apabila berurusan dengan sistem berkeupayaan tinggi untuk aplikasi masa sebenar, kedua-dua ketepatan dan kepantasan perlu dipertimbangkan. Di dalam praktis yang sebenar, untuk mencapai ketepatan dan kepantasan yang tinggi secara serentak adalah mencabar. Tesis ini bermotivasi untuk menyelesaikan masalah ini dan mencadangkan satu kaedah yang cukup pantas untuk pengenalan aksi manusia masa nyata pada kadar 10 kerangka sesaat (fps).

Kaedah yang dicadangkan mempunyai dua bahagian. Pada bahagian pertama, vektor ciri dikeluarkan dari setiap rangka dan pengecam aksi dibina dari turutan vektor –

Kerja ini dinilai dengan menggunakan protokol tinggalkan-satu-pelakon-keluar dan set data pergerakan manusia (disediakan oleh University Illinois di Urbana-Champaign) yang mengandungi 14 aksi. Berdasarkan kepada keputusan amali yang dibuat dengan menggunakan persekitaran MATLAB, purata masa perlaksanaan untuk membentuk vektor ciri adalah 20 ms (50 fps), di mana ianya adalah lebih kecil berbanding dengan data yang telah diterbitkan sebelum ini. Kaedah yang dicadangkan boleh dilatih untuk memenuhi dua tujuan yang berbeza iaitu kelajuan yang tinggi (keperluan utama bagi sistem masa nyata) dan ketepatan yang tinggi (keperluan utama bagi sistem bukan masa nyata). Keputusan yang diperolehi ialah 15.5 fps (kelajuan pengkelas) dan 90.66% (ketepatan), untuk tujuan pertama dan 94.52% (ketepatan) dan 2.37 fps (kelajuan pengkelas), untuk tujuan kedua. Analisis perbandingan menunjukkan sistem yang dicadangkan selain mempunyai kecekapan
yang standing dengan sistem yang terdapat pada sorotan ilmiah, ianya juga
mempunyai kelajuan dan prestasi keseluruhan yang lebih baik berbanding dengan
kaedah – kaedah yang lain. Hasil kajian ini adalah ketara kerana ianya menawarkan
pengecam yang lebih mudah dan menawarkan TDIRBFN sebagai kaedah pilihan
untuk mengklasifikasikan aksi – aksi manusia terutama untuk aplikasi masa nyata.
ACKNOWLEDGEMENTS

To be blunt about it, obstacles and challenges confronting a postgraduate student are formidable. Successfully riding the roller coaster of a postgraduate degree would only be possible with the help of scholars, family, and friends; making commitment and great effort; and also these factors and several others should be in harmony with each other. The following is a few words in appreciation of the help and support that I have received during my study.

First of all, I must thank God for the gift of life, good health, family, friends, teachers, intellect, and all other things which I have been endowed with.

Very special thanks to my extraordinary supervisor, Professor Ishak Bin Aris, for giving me the opportunity of working under his guidance. Without his sage advice, insightful criticisms, kindly assistance, invaluable comments, and constant encouragement I could not reach this final stage of my study.

I would like to express my sincere gratitude and appreciation to my co-supervisor, Dr. Izhal Bin Abdul Halin, for his continuous guidance, valuable feedback, and helpful suggestions.

Many thanks go to Professor Mohamed Bin Daud, Associate Professor Dr. Mohammad Hamiruce Marhaban, Dr. Raja Mohd Kamil Bin Raja Ahmad, all from the Faculty of Engineering, and Associate Professor Dr. Ramlan Mahmod, from the Faculty of Computer Science and Information Technology. Their informative lectures helped me to build the academic background required for my research. I also
attended several excellent orientation workshops, mostly conducted by Associate Professor Dr. Vijay Kumar Mallan from the Faculty of Modern Languages and Communication. The workshops’ atmosphere was vibrant, friendly, enjoyable, and artistically stimulating. I deeply thank him for creating us such an environment with many unforgettable moments. In addition, I appreciate the financial support of the School of Graduate Studies and enormous efforts of its staff for organizing and providing us these free workshops along with many delicious foods.

I must offer my deepest and most heartfelt thanks to my best friend, Dr. Mohammad Karimadini, who has continuously encouraged me to continue my study, kindly answered my endless questions and given me much advice and help before and during my research. I also appreciate all of his great comments and help on editing several important sections of my thesis.

I would like to express my deepest gratitude to my dear sister, Mrs. Farasat Kalhor, and her husband, Mr. Mohammad Ataollah Asaadi, for all their support and help to manage my affairs at Iran. In fact, without their help I would have never been able to handle my financial affairs.

Finally and most of all, I am eternally grateful to my lovely wife, Trifa, who endured being apart from me for several months, at the beginning of this journey, and then interrupted her own career to be at my side. Unfortunately, within the last year of my research she has been suffering an unbearable situation due to heart defects of our new born baby. Actually, without her invaluable support, patience, and sacrifice I could not have completed this thesis.
I certify that a Thesis Examination Committee has met on 27 December 2011 to conduct the final examination of Davood Kalhor on his thesis entitled "Vision-Based Human Action Recognition Using Time Delay Input Radial Basis Function Networks" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master of Science.

Members of the Thesis Examination Committee were as follows:

Nasri bin Sulaiman, PhD
Senior Lecturer
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Abd. Rahman bin Ramli, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Internal Examiner)

Mohd Nizar bin Hamidon, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Internal Examiner)

Mandava Rajeswari, PhD
Professor
School of Computer Sciences
Universiti Sains Malaysia
(External Examiner)

SEOW HENG FONG, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 2 March 2012
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Ishak bin Aris, PhD
Professor
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Izhal bin Abdul Halin, D.Eng
Senior Lecturer
Faculty of Engineering
Universiti Putra Malaysia
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia
Date:
DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or other institutions.

DAVOOD KALHOR

Date: 27 December 2011
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>v</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>viii</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>x</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF ALGORITHMS</td>
<td>xix</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xx</td>
</tr>
</tbody>
</table>

CHAPTER

1. **INTRODUCTION**
 1.1 Background Overview 1
 1.2 Vision-based Action Recognition 5
 1.3 Problem Statement 9
 1.4 Aims and Objectives 10
 1.5 Research Scope 11
 1.6 Research Contributions 14
 1.7 Thesis Outline 14

2. **LITERATURE REVIEW**
 2.1 Introduction 16
 2.2 Action Recognition Fundamental 16
 2.2.1 Activity Hierarchy and Terminology 16
 2.2.2 Actions/Activities Taxonomy 17
 2.2.3 A General Framework for Vision-Based 19
 2.3 Image Representation and Description 23
 2.4 Action Classification 34
 2.4.1 Dynamic Time Warping 34
 2.4.2 Hidden Markov Models 38
 2.4.3 Finite State Machine 43
 2.4.4 k-Nearest Neighbor Classification 45
 2.4.5 Artificial Neural Networks 47
 2.5 Summary 56

3. **METHODOLOGY**
 3.1 Introduction 59
 3.2 Hardware and Software Specifications 59
 3.2.1 Hardware 60
3.2.2 Software 60
3.3 System Description 61
3.4 Feature Extraction 64
 3.4.1 Bounding Box 65
 3.4.2 Grid-based Shape Feature 67
 3.4.3 Mass Center 71
 3.4.4 Box Corners 76
 3.4.5 Action Description 78
3.5 Action Recognition Using Time Delay Input Radial Basis Function Networks 82
 3.5.1 Architecture of the TDIRBFN 83
 3.5.2 The Mathematical Model of the TDIRBFN 85
 3.5.3 Recognition in the TDIRBFN 88
3.6 Model Learning 89
 3.6.1 Feature Selection 89
 3.6.2 Training of the TDIRBFN 91
3.7 Experimental Set up 100
 3.7.1 Dataset Description 100
 3.7.2 Evaluation Protocol 103
3.8 Summary 115

4 RESULTS AND DISCUSSION 117
 4.1 Introduction 117
 4.2 Experimental Results 117
 4.3.1 Experiments Using 3WL1AO 117
 4.3.2 Experiments Using 2WL1AO 129
 4.3 Comparative Analysis 135
 4.3.1 Execution Time 137
 4.3.2 Overall Performance 139
 4.4 Summary 142

5 CONCLUSION AND FUTURE WORKS 144
 5.1 Conclusion 144
 5.2 Future Work 147

REFERENCES 149
APPENDICES 156
 APPENDIX A: MASS CENTER 156
 APPENDIX B: CONFUSION MATRICES 159
BIODATA OF STUDENT 188
LIST OF PUBLICATIONS 189