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ABSTRACT

The formation of callus and somatic embryos remains one of the major bottlenecks in oil 
palm tissue culture. Unlike other crops, oil palm tissue culture is a very slow process. In 
the present study, EgGST (GenBank accession no. AIC33066.1), an oil palm gene coding 
for a putative glutathione S-transferase protein, has been characterized molecularly. The 
full length cDNA sequence of EgGST isolated from oil palm cultured leaf explants at 
the 6th week is 1002 bp in length, with an Open Reading Frame (ORF) of 651 bp. The 
deduced EgGST encodes a 216-amino-acid protein with a predicted molecular mass of 23.68 
kD and a pI value of 6.16. Its protein sequence shares 63% identity with the glutathione 
s-transferase gstf2 from Oryza sativa Indica Group (GenBank accession no. ABR25713.1) 
and contains thioredoxin fold and chloride channel domain. Real-time RT-PCR results 
showed that the EgGST transcript was differentially expressed across a time series of 
fortnightly-cultured leaf explants and had a higher transcript levels in nodular callus (NC) 
compared to friable callus (FC) for oil palm ortet of clone 4178. EgGST was also found 
to be preferentially expressed in all tissue culture derived materials except for oil palm 
cell suspension culture (CSC), whereas there were almost negligible expressions in all the 

non-tissue culture derived materials, except 
for root. Hence, it can be suggested that 
EgGST transcript may possibly be regulated 
differently at different stages of tissue culture 
and various tissues. Interestingly, EgGST 
also displayed a tissue-specific expression 
pattern via RNA in situ hybridization. To our 
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knowledge, this is the first reported study 
on the analysis of the localization of target 
mRNA transcript of EgGST in different oil 
palm tissues. We postulated that EgGST 
might play significant roles at different 
stages of oil palm callogenesis, and could 
potentially be a candidate marker for oil 
palm callogenesis.

Keywords: Oil palm, callogenesis, glutathione 

S-transferases, full length cDNA, real-time RT-PCR, 

RNA in situ hybridization

INTRODUCTION

Oil palm (Elaeis guineensis Jacq.) is an 
unbranched monocotyledonous plant of 
the palm family (Arecaceae) originating 
from West Africa. The oil palm belongs 
to the family Palmaceae and the genus 
Elaeis. Elaeis is derived from the Greek 
work elaion, which means oil, while the 
specific name guineensis shows that Jacquin 
attributed its origin to the Guinea coast, 
West Africa (Corley & Tinker, 2003). At 
present, there is a potential demand for more 
than 100 million oil palm (Elaeis guineensis 
Jacq.) tissue cultured plantlets in the world 
(Corley, 2009; Sharifah & Abu, 2007). In 
terms of performance, clonal plantlets from 
selected ortets have out-yielded commercial 
DxP seedlings by 7%-34% in fresh fruit 
bunch (Kushairi et al., 2010; Sharma, 2006; 
Simon & Koh, 2005; Zamzuri et al., 2005; 
Khaw & Ng, 1997). The use of clonal palms 
has been predicted to improve oil production 
up to 30% (Low et al., 2008).

However, unlike other crops, oil palm 
tissue culture is a very slow process. The 

regeneration process through oil palm tissue 
culture takes 2 to 4 years, depending on the 
genotype. On average, at least 18 months 
are required to produce complete plants 
from callus derived from leaf explants, 
with a callusing rate of only about 20% for 
young leaf and root explants, and the rate 
of embryogenesis from proliferating callus 
culture too was only 3 - 6%, depending 
on the genotypes (Rajainadu et al., 2007; 
Rohani et al., 2000; Wooi, 1995), making 
oil palm tissue culture rather inefficient. 
In an effort to gain insights into oil palm 
callogenesis, a previous study employed 
representational difference analysis (RDA) 
to a pair of cDNA populations from E. 
guineensis; one transcribed from the RNA 
of the 6th week oil palm cultured leaf 
explants (where callus initiation occurred) 
and the other from RNA of 0-day leaf 
explants, which led to the identification of 
the abundantly expressed partial glutathione 
S-transferases gene (Fatihah, 2010).

Plant glutathione S-transferases (GSTs) 
have been actively investigated during the 
past decades (Chronopoulou & Labrou, 2009; 
Basantani & Srivastava, 2007; Moons, 2005; 
Dixon et al., 2002; Edwards et al., 2000; 
Droog, 1997). All the GSTs are reported 
to be either soluble or loosely membrane-
associated dimers with a monomeric size 
of 15 - 28 kDa, and together they comprise 
1 - 3.5% of the total cellular protein (Pairoba 
& Walbot, 2003; Droog et al., 1995). 
GSTs are a superfamily of multifunctional 
enzymes in plants, subdivided into eight 
classes, seven of which (phi, tau, zeta, theta, 
lambda, dehydroascorbate reductase, and 
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tetrachlorohydroquinone dehalogenase) are 
soluble and one is microsomal (Dixon & 
Edwards, 2010; Lan et al., 2009; Basantani & 
Srivastava, 2007). Since their identification 
in plants in 1970, these enzymes have been 
well established as phase II detoxification 
enzymes that perform several other essential 
functions in plant growth and development. 
The GST enzymes have been associated 
with detoxification of xenobiotics, limiting 
oxidative damage and other stress responses 
in plants (Gong et al., 2005).

Currently, a large number of the GST 
genes have been identified or annotated from 
at least 17 plant species (Chronopoulou & 
Labrou, 2009; Conn et al., 2008; Basantani & 
Srivastava, 2007). The number of GST-like 
sequences found in different plant species 
ranges from 25 in soybean to 42, 53, 59 
and 81 in maize, Arabidopsis (http://www.
arabidopsis.org/browse/genefamily/gst.jsp), 
rice and Populus trichocarpa, respectively 
(Lan et al., 2009; Sappl et al., 2009; Sappl 
et al., 2004; Soranzo et al., 2004; Dixon et 
al., 2002; Wagner et al., 2002; McGonigle 
et al., 2000). Some of the GST genes have 
been patented (Chronopoulou & Labrou, 
2009). Until now, no other data have been 
reported on the genome-wide identification 
of the GST family, although at least 20 
plant genomes have been completely 
sequenced (http://www.genomesonline.
org/gold.cgi) (Chi et al., 2011). To date, the 
whole family-based expression analyses 
have been carried out only in Arabidopsis 
(Sappl et al., 2009), P. trichocarpa (Lan et 
al., 2009) and rice (Jain et al., 2010). The 
transcript profiling of all family members 

for the other plants, including oil palm, as 
well as the functional divergence of the 
GST family, is still not available. Hence, it 
will be interesting to know the functional 
role of glutathione S-transferase genes 
(EgGSTs) in E. guineensis. To date, there 
is no reported full-length cDNA isolation of 
EgGST from oil palm. Thus, the aims of this 
study were to isolate a full-length EgGST 
cDNA from oil palm and perform molecular 
characterization.

MATERIALS AND METHODS

Plant Material

Tissue cultured materials of Elaeis guineensis 
Jacq. var. tenera were provided by Felda 
Agricultural Services Sdn. Bhd., Malaysia. 
For expression analysis, young leaf explants 
of clone 4178 cultured on Murashige 
and Skoog (MS) basal culture medium 
(Murashige & Skoog, 1962) supplemented 
with auxin, were collected every 2 weeks 
(day 0 to 26 weeks of culturing). Clone 4178 
was selected as the plant material due to the 
high proliferation ability at the commercial 
laboratory of Felda Biotechnology Centre, 
Felda Agricultural Services Sdn. Bhd. 
(Fatihah, 2010). Meanwhile, the samples 
for tissue specificity study were provided by 
Malaysian Palm Oil Board (MPOB), Sime 
Darby Seeds and Agricultural Services Sdn. 
Bhd. (SDSAS) and Applied Agricultural 
Resources Sdn. Bhd. (AAR). The tissue 
samples were categorised into two groups: 
tissue culture derived materials from 
the leaf [embryogenic callus (EC), non-
embryogenic callus (NEC), oil palm cell 
suspension culture (CSC) and the three 
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different morphologies of oil palm somatic 
embryos identified during the maturation 
stage (globular, haustorium and germinating 
embryo)] and non-tissue culture derived 
materials [female flower (FF), male flower 
(MF), apical meristem (M) and root (R)].

Total RNA Extraction

Each plant material (0.1 g) was ground 
in liquid nitrogen to fine powder using a 
mortar and pestle. Total RNA extraction 
was performed by using TRIzol® reagent 
(Molecular Research Centre,  USA) 
according to the manufacturer’s instructions. 
The RNA concentration was measured 
by absorbance at 260 nm (A260) and the 
purity of the RNA sample was evaluated 
by A260/A280 and A260/A230 ratios using 
NanoPhotometer™ (Implen GmbH, 
Munich, Germany). The integrity of RNA 
obtained was determined by visualization 
on a 1.5% (w/v) formaldehyde agarose gel 
electrophoresis (Sambrook & Russel, 2001).

Full-Length cDNA Isolation of the EgGST

A partial-length cDNA sequence encoding 
putative glutathione S-transferase protein 
was previously identified by Fatihah (2010). 
This gene was designated as EgGST. 
EgGST had partial-length sequence lacking 
the 5’- and 3’-region. Two gene specific 
primers (5’ GSP: 5’-GCATCGCAGA 
G G T C A C C T T C T T G C A C G C - 3 ’ 
a n d  3 ’ G S P :  5 ’ - C C G C AT G T TA A 
GGCATGGTGGGAGG-3’) were designed 
based on the partial-length of the cDNA 
sequence to isolate the 5’ and 3’-region 
of the putative EgGST, respectively. The 

SMARTerTM RACE (Rapid Amplification 
of cDNA Ends) cDNA Amplification Kit 
(Clontech, USA) and the Advantage 2 
Polymerase Mix (Clontech, USA), together 
with the gene specific primers, were used in 
the isolation of the 5’ and 3’-regions of the 
gene. The sequences of all the partial-length, 
5’ and 3’-regions were assembled into 
contigs by the Contig Assembly Programme 
(CAP) using the BioEdit  Sequence 
Alignment Editor Version 7.0.9.0 (Hall, 
1999) to get the full-length sequence of the 
EgGST. Based on the full-length sequence, 
two gene specific primers (ORF forward:5’-
AGACGATGGGGGTGA AGGTCTATG-3’ 
and ORF reverse: 5’-ACGCAGATCCAG 
GCATCGCAGAG-3’) were designed to 
amplify the Open Reading Frame (ORF) 
region. The ORF of the transcript was 
isolated by PCR amplification of the 
5’-RACE-Ready cDNA template with 
the two gene specific primers. The PCR 
product was then cloned into the yT&A 
cloning vector (Yeastern Biotech, Taiwan) 
and sequenced at both directions (NHK 
Bioscience Solutions Sdn. Bhd., Malaysia).

Sequence Analysis

The 5’-RACE PCR product, 3’-RACE 
PCR product and ORF sequences of the 
putative EgGST were analyzed using 
the BLASTN, BLASTX and BLASTP 
programmes at the National Centre of 
Biotechnology Information (NCBI). 
These programmes were used to search 
for significant similarities between the 
isolated sequences with NCBI/Genbank 
databases. BLASTX and BLASTN were 
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used to search for significant identities 
in the non-redundant protein sequences 
(nr) and expressed sequence tags (ESTs) 
databases, respectively. The clustal W 
multiple alignment programme in the 
Bioedit software was used to align the 
amino acid sequence of the EgGST with 
homologous sequences from other plants. 
The acquired sequence data were also 
analyzed further using the Prediction of 
Protein Sorting Signals and Localization 
Sites in Amino Acid Sequences (PSORT) 
(http://psort.nibb.ac.jp) (Horton et al., 2007), 
plant-mPLoc (http://www.csbio.sjtu.edu.cn/
bioinf/plant-multi/) (Kuo-Chen & Hong-
Bin, 2010), Biology Workbench Version 3.2 
(http://workbench.sdsc.edu) (Subramaniam, 
1998), SignalP 4.0 Server (http://www.
cbs.dtu.dk/services/SignalP/) (Petersen 
et al., 2011), Compute pI/Mw (Expasy) 
(http://br.expasy.org/tools/) and FEX 
Programme (http://www.molquest.com/
molquest.phtml?group=index&topic=gfind) 
(Solovyev et al., 1994). The phylogenetic 
tree of EgGST was constructed using the 
Mega version 4 software (Tamura et al., 
2007). In this study, the cut-off score and 
Expect (E) value were set at 50 and 10-5, 
respectively; whereby all the matches with 
BLASTX scores equal to 50 or above and E 
value equal or less than 10-5 were considered 
significant.

Expression Study by using Real-Time RT-
PCR (Reverse Transcriptase-PCR)

One microgram of the total RNA was used 
for reverse transcription into first-strand 
cDNA using the QuantiTect® Reverse 

Transcription Kit (Qiagen, USA). Primers 
for the real-time RT-PCR analysis were 
designed using the Primer3Plus software 
(http://www.bioinformatics.nl/cgi-bin/
primer3plus/primer3plus.cgi) based on 
the 3’ un-translated regions (UTRs) of 
the full-length transcript sequence of the 
EgGST obtained. The suitability of the 
designed primers was checked by using 
the Oligonucleotide Properties Calculator 
software (http://www.basic.northwestern.
edu/biotools/oligocalc.html). The Brilliant® 
SYBR Green QPCR Master Mix (Stratagene, 
USA) was used for real-time RT-PCR 
reaction. Each PCR mixture contained 
1X master mix (comprising SYBR® 
green I dye, 2.5 mM MgCl2, and dNTPs 
mixture), 100 nM of gene specific primers 
(Forward primer: 5’-ATCTGCGTGAGA 
G G TAT C G G T T G - 3 ’ a n d  R e v e r s e 
p r i m e r :  5 ’ - AT TA C C C A C C AT C C 
CACCCTAGA-3’), 2 μL of 10-fold diluted 
first-strand cDNAs in a total volume of 
20 μL. The amplification was performed 
in the iQ5 Real Time PCR Detection 
System (BioRad, USA) using the following 
program: 95°C for 10 minutes; 50 cycles of 
95°C for 30 seconds, 60°C for 45 seconds 
and 72°C for 30 seconds. For each sample, 
three technical replicates were included. All 
the experiments contained a non-template 
control (negative control) and a calibrator. 
The quantity of the gene expression levels 
in every experimental tissue was expressed 
relative to the calibrator, i.e. 0-day leaf 
explants (clone 4178). Comparative CT 
method was used to estimate the relative 
expression level of EgGST transcripts 
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(Livak & Schmittgen, 2001). The relative 
expression were carried out across a 
time series of fortnightly-cultured leaf 
explants and in different oil palm tissues 
and analysed using the geNorm software 
(Primer-Design, UK) (Vandesompele et 
al., 2002). In the analysis, the relative 
quantity of the transcripts were normalized 
with the expression of three endogenous 
genes including unknown/hypothetical 
protein (EA 1332; GenBank accession 
no. EY406625.1), superoxide manganese 
dismutase (PD 569; GenBank accession 
no. EL682210.1) and glyceraldehyde 
3-phosphate dehydrogenase (GAPDH; 
GenBank accession no. DQ267444).

The sequences of the primers are as 
follow:

EA 1332 sense 
5’ – TTAAGAATGCTCGGGAAAGG – 3’

EA 1332 antisense 
5’ – CTACTTCTGTCTGCAATTTTGG – 3’

PD 569 sense 
5’ – ATCAACCACTCAATCTTCTGG – 3’

PD 569 antisense 
5’ – CTTCTGCGTTCATCTTTTGC – 3’

GAPDH sense 
5’ – GCCAGCTTTAACATCATTCCTAGC – 3’

GAPDH antisense 
5’ – AGCTTTCCATTTAAGGCAGGAAG – 3’

Expression Study by using RNA in situ 
Hybridisation

One morphology of oil palm somatic 
embryo identified during the maturation 
stage (germinating embryo), plus several 
oil palm in vitro cultured-derived samples 
such as leaf explants (LE), embryogenic 

callus (macroscopically nodular and friable 
cultures) and non-embryogenic callus 
(macroscopically not friable), were used to 
study the expression of EgGST transcripts. 
All the plant materials were provided by 
Felda Agricultural Services Sdn. Bhd., 
Malaysia. Sense and antisense riboprobes 
were synthesised by using AmpliscribeTM T3 
High Yield and AmpliscribeTM T7 FlashTM 
Transcription Kit, respectively (Epicentre® 
Biotechnologies, USA) according to the 
manufacturer’s instructions. Sense and 
antisense probes were generated by designing 
the gene specific primers containing 
the minimum T3 promoter sequence 
(5’-AATTAACCCTCACTAAAGG-3’) 
a n d  T 7  p r o m o t e r  s e q u e n c e 
(5’-TAATACGACTCACTATAGG-3’), 
respectively needed for efficient transcription 
(as bolded below). The primers were 
designed at the ORF and 3’UTR region of 
the EgGST sequence. The sequences of the 
primers are as follows:

T3F:
5’-AATTAACCCTCACTAAAGG 

GATGTGTGGTTGGAAGTGGAATC-3’
T7R: 
5’-TAATACGACTCACTATAGG 

CTCAATAGACAGGGACTCACAGC-3’

In situ  hybridisation (ISH) was 
performed according to the method described 
by Ooi et al. (2012). All the images were 
then viewed and photographed with a 
camera attached to the LEICA DM6000 
B light microscope (Leica, Germany) and 
processed with the Progress Research Pro 
software (Leica, Germany).
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RESULTS AND DISCUSSION

Sequence Analysis of the Full-Length 
cDNA of EgGST

The full-length cDNA sequence of EgGST 
(1002 bp) was predicted to encode a 
polypeptide of 216 amino acid residues with 
78 bp of 5’ UTR, 651 bp of open reading 
frame and 273 bp of 3’ UTR including 
a poly-A tail (GenBank accession no. 
AIC33066.1). By using Compute pI/Mw 
(Expasy tools software), the EgGST has a 
predicted molecular mass of 23.68 kD, with 
a pI value of 6.16. The BLASTX analysis 
(NCBI) showed that the deduced amino acid 
sequence of EgGST was 63% identical to 
glutathione s-transferase gstf2 from Oryza 
sativa Indica Group and 62% identical to 
glutathione transferase from Alopecurus 
myosuroides. This was followed by phi class 
glutathione transferase GSTF3 from Populus 
trichocarpa (61%), glutathione transferase 
from Hordeum vulgare subsp. vulgare 
(61%), glutathione-S-transferase 19E50 
from Triticum aestivum (61%), glutathione-
s-transferase theta, gst, putative from 
Ricinus communis (60%), and glutathione 
S-transferase 1 from Zea mays (56%). The 
deduced amino acid sequence of EgGST 
has a thioredoxin fold domain located at the 
positions of 4 - 82 and a chloride channel 
domain located at the positions of 90 - 216 
(see Fig.1).

Glutathione (GSH) is the tripeptide 
γ-glutamyl-cysteinyl-glycine and plays a 
central role in the processes of detoxification 
and redox buffering (Noctor & Foyer, 1998). 
GST proteins consist of two well-defined 
domains, the N-terminal domain that 

binds the primary substrate GSH and the 
C-terminal domain that binds the secondary 
substrate (Edwards et al., 2000). Plant GSTs 
acted by catalyzing nucleophilic conjugation 
of the reduced form of the tripeptide GSH to 
a wide variety of hydrophobic, electrophilic, 
and usually cytotoxic substrates. The toxic 
molecule, GSH conjugate can then be 
transported to the vacuole or apoplast and 
metabolised to a non-toxic compound such 
as peptide derivatives (Dixon & Edwards, 
2010; Edwards et al., 2000).

Most GSTs are active as dimers, 
composed of either homogeneous (the most 
prevalent form) or heterogeneous subunits 
(Edwards et al., 2000). The thioredoxin-like 
N-terminal domain (4 - 82 amino acids), 
as shown in Figure 1, binds to GSH, and 
is conserved in all classes of GSTs (Dixon 
et al., 2002). By contrast, the C-terminal 
chloride channel domain (90 - 216 amino 
acids) (Figure 1) is the domain that provides 
structural elements for the recognition of 
xenobiotic substrates, which tends to exhibit 
much more diversity within and among 
classes of GSTs (Basantani & Srivastava, 
2007; Edwards et al., 2000). In 2009, 
Lan et al. suggested that the C-terminal 
domain could lead to diversification in 
substrate selectivity and specificity among 
the members of Populus trichocarpa tau 
GSTs, while preserving the enzymes’ 
primary function and thus, enhance the 
metabolism of substances encountered in 
the environment.

Plant GSTs are classified based on amino 
acid sequence identity and conservation of 
gene structure (i.e., exon/intron numbers), 
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in which the number of exons is different 
for each class (Licciardello et al., 2014; 
Mohsenzadeh et al., 2011). For example, 
phi class of GST genes contains three exons, 
tau class contains two exons and zeta class 
contains ten exons in their genes. In the FEX 
Program (Prediction of internal, 5’- and 

3’- exons) analysis, EgGST was predicted 
to have five potential exons. Conserved 
Domain Database (CDD) analysis (NCBI) 
on the deduced amino acid sequence of 
EgGST (http://www.ncbi.nlm.nih.gov/
Structure/cdd/cdd.shtml) (Marchler-Bauer 
et al., 2013) showed that EgGST belongs 

Fig.1: Alignment of Deduced Amino Acid Sequences of EgGST with Alopecurus myosuroides, Triticum 
aestivum, Populus trichocarpa, Hordeum vulgare subsp. vulgare, Oryza sativa Indica Group, Ricinus 
communis and Zea mays sequences.

The identical amino acids are boxed. The sequences were downloaded from Genbank: AmGST, glutathione transferase of 
Alopecurus myosuroides (Acc. No. CAA09191.1); TaGST, glutathione-S-transferase 19E50 of Triticum aestivum (Acc. 
No. AAL47688.1); PtGST, phi class glutathione transferase GSTF3 of Populus trichocarpa (Acc. No. ADB11382.1); 
HvsvGST, glutathione transferase of Hordeum vulgare subsp. vulgare (Acc. No. AAL73394.1); OsigGST, glutathione 
s-transferase gstf2 of Oryza sativa Indica Group (Acc. No. ABR25713.1); RcGST, glutathione-s-transferase theta, gst, 
putative of Ricinus communis (Acc. No. XP_002531867.1); ZmGST, glutathione S-transferase 1 of Zea mays (Acc. No. 
NP_001105412.1). The thioredoxin fold domain (4 – 82 amino acids) and chloride channel domain (90 – 216 amino 
acids) are as shown above.
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to phi class GSTs. However, this is only 
a prediction by bioinformatics data and 
the exact classification of EgGST can 
only be confirmed after resolving the 
crystal structures of EgGST through X-ray 
crystallography. The tau and phi class 
GSTs are the most represented ones, plant-
specific and chiefly involved in xenobiotic 
metabolism (Basantani & Srivastava, 2007; 
Moons, 2005). Genome-wide analysis of 
biochemical characteristics of Arabidopsis 
thaliana and Populus trichocarpa tau and 
phi GSTs found that these two classes of 
GSTs have broad substrate specificities 
(Dixon et al., 2009; Lan et al., 2009), 
which may be related to the high tolerance 
to abiotic stresses, especially to a broad 
spectrum of xenobiotics such as herbicides, 
salt and UV stressors (Jha et al., 2011). Zeta- 
and theta-class GSTs have very restricted 
activities towards xenobiotics. Theta-class 
GSTs are glutathione peroxidases and 
involved in oxidative-stress metabolism, 
whereas zeta-class GSTs act as glutathione-
dependent isomerases and catalyse the 
glutathione-dependent conversion of 
maleylacetoacetate to fumarylacetoacetate. 
Zeta-class GSTs participate in tyrosine 
catabolism. Dehydroascorbate reductase- 
and lambda-class GSTs function as 
thioltransferases (Basantani & Srivastava, 
2007). Dehydroascorbate reductase is 
also a key enzyme in the ascorbate-
glutathione cycle that maintains reduced 
pools of ascorbic acid, which serves as 
an important antioxidant (Moons, 2005). 
Microsomal-class GSTs are members of the 
MAPEG (membrane-associated proteins 

in eicosanoid and glutathione metabolism) 
superfamily (Basantani & Srivastava, 2007).

In the WoLF PSORT and Plant-mPLoc 
analysis, EgGST was predicted to be located 
in the cytosol. The GSTs reported so far 
are mostly soluble cytosolic enzymes, and 
have been classified in classes ranging 
from mammals, plants, insects, parasites, 
fungus, to bacteria (Mohsenzadeh et al., 
2011; Wongsantichon & Ketterman, 2005). 
By using SignalP, EgGST was predicted 
to not having any signal peptide, implying 
that it is located in the cytosol. A sequence 
comparison between the deduced EgGST 
with GST protein of other plants revealed 
that GST proteins are indeed well conserved 
across monocot and eudicot plants (Figure 
1). The similarities are almost evenly 
distributed throughout the sequence, in 
the thioredoxin fold domain (4 - 82 amino 
acids) and the chloride channel domain 
(90 - 216 amino acids). A phylogenetic tree 
was plotted to estimate the relationship 
between the sequences of EgGST with 
other sequences of plant glutathione 
transferase proteins (Figure 2). The resulting 
phylogenetic tree (Figure 2) is organized 
into two clades. Interestingly, EgGST that 
encodes a putative glutathione transferase 
protein appeared to be belonging to clade 2, 
together with the putative PtGST sequence 
from Populus trichocarpa and RcGST 
sequence from Ricinus communis. Hence, 
EgGST might belong to either phi- or theta-
class GSTs. Therefore, the comparison 
of monocot and eudicot GST proteins in 
this study revealed that during evolution 
eudicot, members of the GST family have 
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developed along two different directions. 
Hence, understanding the genomic and 
functional evolution of gene families is 
essential for understanding the phenotypic 
diversification of organisms and their 
genetic systems. Lan et al. (2009) revealed 
the complex history of genome duplications 
and chromosomal rearrangements in 
Populus through the course of genome 
evolution, which is thought to occur in order 
to supply raw genetic material, allowing 
functional divergence and rapid biological 
evolution. The genome duplications and 
chromosomal rearrangements process could 
have probably been taking place in oil palm 
too through the course of evolution as GSTs 
are evolutionarily ancient proteins. Hence, 
EgGST might also be descendant from 

gene duplication. However, to date, limited 
information is available on the patterns 
of functional diversification governing 
the evolution of most classes of gene 
families in the plant kingdom (Lan et al., 
2009). Previous phylogenetic analysis had 
suggested that Theta, Zeta and Omega GSTs 
as the most ancestral classes in plants (Chi 
et al., 2011; da Fonseca et al., 2010). GSTs 
were also thought to have evolved from a 
thioredoxin-like ancestor in response to the 
development of oxidative stress (Martin, 
1995; Koonin et al., 1994).

Real-Time RT-PCR Analysis of EgGST

The EgGST transcript was shown to be 
differentially expressed across a time 

Fig.2: Phylogenetic Relationship of EgGST and Different Plant Species Based on the Deduced Amino Acid 
Sequences

An unrooted neighbour-joining tree generated from the multiple alignment of EgGST protein (underlined) with GST 
proteins of other plant’s proteins, with repeat verification for 5000 times by Bootstrap. The number on the branch means 
the percentage of repeat verification credibility. Bootstrap values are indicated for branches supported by more than 50% 
of 5000 replicates. The tree is drawn to scale, with branch lengths in the same units as those of the evolutionary distances 
used to infer the phylogenetic tree. The length of the branches is proportional to the number of amino acid substitutions 
per residue. MEGA (Molecular Evolutionary Genetic Analysis version 4) was used to construct the phylogenetic tree 
based on neighbour-joining method.
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series of fortnightly-cultured leaf explants. 
The expression showed an increase from 
0-day leaf explants to 6th week cultured leaf 
explant and dropped at 8th week but started 
to peak again from 10th week until 14th week 
cultured leaf explants (see Figure 3A). The 
expression profile of the EgGST transcript 
was similar to that reported previously by 
Che et al. (2006) who observed that the 
frequency of stress response genes increased 
with time during callus development in 
Arabidopsis tissue culture. However, it 
dropped again at 16th week, followed by a 
rhythmic pattern of expression at different 
time points, peaking at 20th week with a 
subsequent decline at 22nd week, and a slight 
increase from 24th week to 26th week cultured 
leaf explants. The result, as illustrated in 
Figure 3A, is also in agreement with the 
previous finding by Fatihah (2010), where 
the relative transcript level of EgGST was 
found higher in the cultured leaf explants 
at 6th week in comparison to the 0-day leaf 
explants. FC is embryogenic callus and has 
the capacity to produce somatic embryo 
of oil palm but the frequently produced 
callus is NC, which is non-embryogenic 
callus. An expression comparison was 
done in both stages of the oil palm callus 
development, which might help to enhance 
our understanding on the embryogenic callus 
production. EgGST had higher transcript 
levels in nodular callus (NC) compared 
to friable callus (FC) for oil palm ortet of 
clone 4178 (Figure 3B), with 5.08764 and 
0.71569 folds, respectively, compared to 
that of the expression level in 0-day leaf 
explants. The expression level of EgGST 

transcript in 0-day leaf explants was used 
as a reference point (calibrator). The result 
shown in Figure 3B is in agreement with that 
of Low et al. (2008). GST was reported to 
be up-regulated in non-embryogenic callus 
of oil palm compared to embryogenic callus 
and embryoid via northern blot analysis, 
but was to some extent genotype-dependent 
(Low et al., 2008). Nevertheless, Legrand 
et al. (2007) had also reported that two 
GSTs were preferentially expressed in the 
cultured explants from a non-embryogenic 
genotype of Cichorium intybus L. via in 
silico EST data analysis and real-time RT-
PCR experiments.

Evidence showed that the transcript of 
plant GST genes was regulated by various 
abiotic and biotic stresses, as well as 
hormones including xenobiotic-type stresses 
such as herbicide application (Edwards et 
al., 2000), chilling (Seppänen et al., 2000), 
dehydration (Bianchi et al., 2002; Kiyosue 
et al., 1993), hypoxic stress (Moons, 
2003), wounding (Vollenweider et al., 
2000), pathogen attack (Mauch & Dudler, 
1993), ethylene (Zhou & Goldsbrough, 
1993), auxin (Chen & Singh, 1999), 
2,4,6-trinitrotoluene (TNT) (Brentner et 
al., 2008), hydrogen peroxide (H2O2) and the 
defence signal salicylic acid (SA) (Chen et 
al., 1996). Callus is often induced in or upon 
contact of the wounded part of the explants 
with the media. During tissue culture, 
mechanical wounding, osmotic shock, 
hormonal imbalances and environmental 
cues such as exogenous auxin induction 
and cutting may cause significant stress 
effects that can trigger the somatic cells to 
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Fig.3: Expression Profiles of EgGST. (A) Relative transcript levels of EgGST in fortnightly-cultured leaf 
explants, (B) Relative transcript levels of EgGST in 0-day leaf explants, Friable Callus and Nodular Callus, 
(C) Relative transcript levels of EgGST in different oil palm tissues. 

Relative amounts of EgGST transcripts were normalized to the geometric mean of the three endogenous references (EA 
1332, PD 569 and GAPDH) by using the Comparative CT method and were then rescaled to the expression values in 
0-day leaf explants (clone 4178). The error bars represent mean ± SD of three technical replicates. LE, leaf explant; EC, 
embryogenic callus; NEC, non-embryogenic callus; CSC, cell suspension culture.
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differentiate into embryogenic competent 
cells (Singla et al., 2007; Fehér et al., 2003; 
Dixon et al., 2002; Pfeiffer & Höftberger, 
2001). The stress effect may produce 
reactive oxygen species (ROS) such as 
H2O2 that may lead to lipid peroxidation, 
biological macromolecule deterioration, 
membrane dismantling, ion leakage, and 
DNA-strand cleavage and finally death of 
plants (Rascio & Navari-Izzo, 2011; Hossain 
et al., 2010; Romero-Puertas et al., 2002). 
H2O2 is a small, diffusible molecule that is 
widely considered to be a signal molecule 
in the regulation of the defense system 
(Neill et al., 2002). H2O2 plays a dual role 
in plants: at low concentration, it acts as 
a signal that induces the expression of 
numerous defense genes encoding cellular 
protectants such as glutathione S-transferase 
and glutathione peroxidase, and activates 
multiple defense responses to abiotic 
stresses, while excessive accumulation 
leads to cellular oxidative damage and 
even programmed cell death (Levine et al., 
1994; Prasad et al., 1994). The ability of a 
plant to express stress-response genes to 
endure stress and regulate ROS levels can 
inevitably help the proliferation of culture 
lines into embryoids. This was supported 
by Lin et al. (2009), who reported that 
most of the disease- and defense-related 
ESTs isolated during oil palm somatic 
embryogenesis code for GST. This is also in 
line with the finding of a previous study by 
Fatihah (2010), which showed that EgGST 
was up-regulated in leaf explants at 6th 
week as compared to 0-day, which could 
be stress responsive effect or to initiate 

callus formation. Besides its plausible role 
in the initiation of meristematic cells that 
led to callus formation in 6th week cultured 
leaf explants, GST was probably involved 
in the morphogenesis of NC. Stressful 
environment can also induce morphogenic 
events in vitro (Gong et al., 2005). Stress-
induced growth is related to the production 
of ROS that might trigger the expression of 
GST (Gong et al., 2005; Fehér et al., 2003; 
Dixon et al., 2002).

In contrast, there are also reports 
that GSTs were expressed in cultured 
leaves of Cichorium undergoing somatic 
embryogenesis (Galland et al., 2001) and 
thus, have been linked with somatic embryo 
formation in carrot (Kitamiya et al., 2000). 
Consistently, GST accumulation has been 
reported in somatic embryos of Cyclamen 
persicum (Winkelmann et al., 2006), 
Vitis vinifera (Marsoni et al., 2008), and 
embryogenic cells of Medicago truncatula 
(Imin et al., 2004). This is not surprising as 
GSTs are represented by a large and diverse 
gene family in plants which can be divided 
on the basis of sequence identity into phi, 
tau, theta, zeta and lambda classes (Dixon et 
al., 2002). This can also be explained by the 
compensatory potential of other members of 
the GST family. Hence, it can be suggested 
that EgGST transcript might possibly be 
regulated differently at different stages 
of tissue culture, FC and NC. However, 
this can only be verified by performing 
validation tests using a much larger numbers 
of samples and a wider range of genotypes.

Over all in oil palm, EgGST was found 
to be preferentially expressed in all tissue 
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culture derived materials from leaf except for 
CSC, whereas there were almost negligible 
expression in all the non-tissue culture 
derived materials except for root (Figure 
3C). In 2005, Gong et al. had reported that 
BjGSTF2, a gene homologous to the phi 
class GSTs, accumulated differentially in 
mustard organs, where the transcript was 
most abundant in root. In addition to that, 
a plant GST from Arabidopsis thaliana, 
AtGSTU17 had been reported to be involved 
in seedling development and root elongation, 
whereby the loss-of-function mutant of 
AtGSTU17 resulted in a reduced biomass of 
seedlings and number of lateral roots in the 
presence of auxin (Jiang et al., 2010). Since 
the GST enzymes have long been associated 
with detoxification of xenobiotics, limiting 
oxidative damage and other stress responses 
in plants (Gong et al., 2005), a higher 
expression of EgGST transcript in root is 
probably to exclude the processes from 
the sensitive metabolism in shoot. The 
relative transcript levels of EgGST were 
fluctuating during the embryoid transition 
from globular to germinating stages which 
occurred at the late stages of somatic 
embryogenesis. During the transition period, 
EgGST was found to be highly expressed in 
germinating embryoid followed by globular 
and haustorium, with 0.48258, 0.35309 
and 0.28537 fold, respectively, compared 
to that of the expression level in 0-day leaf 
explants. Since the expression of EgGST 
transcripts were detected in all tissue 
culture derived materials from leaf (except 
for CSC) and in root, it can be concluded 
that EgGST may have a broader roles in oil 
palm growth and development, in addition 

to having functions in various stresses as 
supported by Gong et al. (2005) and Moons 
(2005). Besides, there are also a few other 
reported roles of GSTs in endogenous plant 
developmental processes; in the vacuolar 
sequestration of anthocyanins in maize, 
petunia and Arabidopsis (Kitamura et al., 
2004; Alfenito et al., 1998; Marrs et al., 
1995), as binding proteins by binding to 
various hormones including auxin (Smith 
et al., 2003) and cytokinin (Gonneau et al., 
2001), as well as porphyrin compounds 
(Lederer & Böger, 2003) to regulate their 
activities. Recently, Arabidopsis GSTF2 
was found to selectively bind the indole-
derived phytoalexin camalexin as well as 
the flavonol quercetin-3-O-rhamnoside, 
suggesting a role in regulating the binding 
and transport of defense-related compounds 
in plants (Dixon et al., 2011). The fact that 
plant GSTs can be induced by a wide variety 
of phytohormones, including ethylene, 
auxin, methyl jasmonate, salicylic acid, and 
abscisic acid (ABA) (Moons, 2003; Smith 
et al., 2003; Wagner et al., 2002) and that 
all these hormones regulate many aspects 
of plant development also supports that 
plant GSTs may play vital roles in plant 
growth and development as well. However, 
evidence to substantiate this role is still 
limited.

RNA in situ Hybridization Analysis of 
EgGST

The analysis of the localization of target 
mRNA transcript of EgGST was performed 
in germinating embryo, EC, NEC and 
LE, as the transcripts were found to be 
preferentially expressed in the respective 
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tissues of oil palm (Figure 3C). RNA in situ 
hybridization is a widely used method that 
allows one to analyse the localization of 
target mRNAs in a preserved tissue section 
(Bayer et al., 2009). The main objective of 
this part of study is to examine the spatial 
expression pattern of EgGST in various 
oil palm tissues at cellular level and to 
clarify the signals detected in real-time 
RT-PCR. In addition, eukaryotic cells are 
highly compartmentalized, and the correct 
localization of proteins is essential for their 
function (Boruc et al., 2010).

In both germinating embryo and 
EC hybridized with antisense and sense 
of riboprobe each, positive signal was 
detected in the middle of the developing 
germinating embryo and EC (Figure 4a, 
4b, 4c, 4d). No expression was observed 
in the rest of the germinating embryo and 
EC tissue. Meanwhile, in NEC hybridized 
with antisense and sense of riboprobe each, 
a weak signal was detected at the corner 
of the developing NEC (Figures 4g & 4h). 
No expression was observed in the rest of 
the NEC tissue. When NEC was hybridised 
with the elongation factor ELF antisense 
probe (positive control), a clear signal was 
observed that was exclusively localized 
to the actively-dividing cell layer at the 
surrounding of NEC (Figures 4e & 4f). 
Besides its plausible role in the initiation of 
meristematic cells that led to callus formation 
in 6th week cultured leaf explants, EgGST is 
probably involved in the morphogenesis of 
nodular callus (Fatihah, 2010). Moreover, 
Galland et al. (2001) suggested that the 
GST transcript accumulation is not only 

caused by abiotic and biotic stress but might 
also be involved in cellular proliferation 
activity. They also reviewed that GST was 
expressed during transition of G to S phase 
of mitosis of tobacco mesophyll protoplast 
and Arabidopsis zygotic embryogenesis. 
During tissue culture, mechanical wounding, 
osmotic shock, hormonal imbalances and 
environmental cues such as exogenous auxin 
induction and cutting may cause significant 
stress effects that can trigger the somatic 
cells to differentiate into embryogenic 
competent cells (Singla et al., 2007; Féher 
et al., 2003; Dixon et al., 2002; Pfeiffer & 
Höftberger, 2001). This indicated the role of 
GST in the initiation of meristematic activity 
of differentiated cells (Vernoux et al., 2000; 
Takahashi & Nagata, 1992).

On the other hand, strong positive 
signals were observed in the oil palm leaf 
explants when hybridised with antisense and 
sense of EgGST riboprobe each (Figures 
4i & 4j). This is not surprising as during 
tissue culture, mechanical wounding and 
cutting of oil palm leaf explants may cause 
significant stress effects that induce the 
expression of GST. To date, this has been 
the first reported study on the analysis of 
the localisation of target mRNA transcript 
of EgGST in different oil palm tissues. 
Hence, we proposed that EgGST might play 
significant roles at different stages of oil 
palm callogenesis and could potentially be 
a candidate marker for oil palm callogenesis. 
As such, EgGST can be used for screening 
explants with high callusing rates, thus 
enabling reductions in time and costs in the 
micropropagation process.
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CONCLUSION

The full length cDNA sequence of EgGST 
(GenBank accession no. AIC33066.1) 
isolated from oil palm cultured leaf explants 
at the 6th week is 1002 bp in length with 
an Open Reading Frame (ORF) of 651 bp. 
The deduced EgGST encodes a 216-amino-

acid protein and contains thioredoxin fold 
and chloride channel domain. Based on 
the real-time RT-PCR results obtained, it 
can be suggested that EgGST transcript 
might possibly be regulated differently 
at different stages of tissue culture and 
various tissues. EgGST also displayed a 
tissue-specific expression pattern via RNA 

Fig.4: Localization of mRNA transcript of selective probes (EgGST or ELF) on various oil palm tissues. 

a, b: germinating embryo hybridized with EgGST; c, d: embryogenic callus (EC) hybridized with EgGST; e, f: non-
embryogenic callus (NEC) hybridized with elongation factor (ELF, positive control); g, h: non-embryogenic callus (NEC) 
hybridized with EgGST; i, j: oil palm leaf explants (LE) hybridized with EgGST. The a, c, e, g, i are antisense and b, 
d, f, h, j are sense hybridizations. The presence of purple stain or deposit is regarded as positive signal (black arrows). 
Scale bar = 260.3 μm.
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in situ hybridisation. Hence, we postulated 
that EgGST might play significant roles at 
different stages of oil palm callogenesis and 
could potentially be a candidate marker for 
oil palm callogenesis. It may be interesting 
to further explore the expression profiles 
of EgGST across a wider range of oil palm 
genotypes in order to confirm the suitability 
as putative marker.
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